31 research outputs found

    Season of birth, clinical manifestations and Dexamethasone Suppression Test in unipolar major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reports in the literature suggest that the season of birth might constitute a risk factor for the development of a major psychiatric disorder, possibly because of the effect environmental factors have during the second trimester of gestation. The aim of the current paper was to study the possible relationship of the season of birth and current clinical symptoms in unipolar major depression.</p> <p>Methods</p> <p>The study sample included 45 DSM-IV major depressive patients and 90 matched controls. The SCAN v. 2.0, Hamilton Depression Rating Scale (HDRS) and Hamilton Anxiety Scale (HAS) were used to assess symptomatology, and the 1 mg Dexamethasone Suppression Test (DST) was used to subcategorize patients.</p> <p>Results</p> <p>Depressed patients as a whole did not show differences in birth season from controls. However, those patients born during the spring manifested higher HDRS while those born during the summer manifested the lowest HAS scores. DST non-suppressors were almost exclusively (90%) likely to be born during autumn and winter. No effect from the season of birth was found concerning the current severity of suicidal ideation or attempts.</p> <p>Discussion</p> <p>The current study is the first in this area of research using modern and rigid diagnostic methodology and a biological marker (DST) to categorize patients. Its disadvantages are the lack of data concerning DST in controls and a relatively small size of patient sample. The results confirm the effect of seasonality of birth on patients suffering from specific types of depression.</p

    Cell Lineage and Regional Identity of Cultured Spinal Cord Neural Stem Cells and Comparison to Brain-Derived Neural Stem Cells

    Get PDF
    Neural stem cells (NSCs) can be isolated from different regions of the central nervous system. There has been controversy whether regional differences amongst stem and progenitor cells are cell intrinsic and whether these differences are maintained during expansion in culture. The identification of inherent regional differences has important implications for the use of these cells in neural repair. Here, we compared NSCs derived from the spinal cord and embryonic cortex. We found that while cultured cortical and spinal cord derived NSCs respond similarly to mitogens and are equally neuronogenic, they retain and maintain through multiple passages gene expression patterns indicative of the region from which they were isolated (e.g Emx2 and HoxD10). Further microarray analysis identified 229 genes that were differentially expressed between cortical and spinal cord derived neurospheres, including many Hox genes, Nuclear receptors, Irx3, Pace4, Lhx2, Emx2 and Ntrk2. NSCs in the cortex express LeX. However, in the embryonic spinal cord there are two lineally related populations of NSCs: one that expresses LeX and one that does not. The LeX negative population contains few markers of regional identity but is able to generate LeX expressing NSCs that express markers of regional identity. LeX positive cells do not give rise to LeX-negative NSCs. These results demonstrate that while both embryonic cortical and spinal cord NSCs have similar self-renewal properties and multipotency, they retain aspects of regional identity, even when passaged long-term in vitro. Furthermore, there is a population of a LeX negative NSC that is present in neurospheres derived from the embryonic spinal cord but not the cortex

    A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies

    Get PDF
    Microtubule severing enzymes implement a diverse range of tissue-specific molecular functions throughout development and into adulthood. Although microtubule severing is fundamental to many dynamic neural processes, little is known regarding the role of the family member Katanin p60 subunit A-like 1, KATNAL1, in central nervous system (CNS) function. Recent studies reporting that microdeletions incorporating the KATNAL1 locus in humans result in intellectual disability and microcephaly suggest that KATNAL1 may play a prominent role in the CNS; however, such associations lack the functional data required to highlight potential mechanisms which link the gene to disease symptoms. Here we identify and characterise a mouse line carrying a loss of function allele in Katnal1. We show that mutants express behavioural deficits including in circadian rhythms, sleep, anxiety and learning/memory. Furthermore, in the brains of Katnal1 mutant mice we reveal numerous morphological abnormalities and defects in neuronal migration and morphology. Furthermore we demonstrate defects in the motile cilia of the ventricular ependymal cells of mutants, suggesting a role for Katnal1 in the development of ciliary function. We believe the data we present here are the first to associate KATNAL1 with such phenotypes, demonstrating that the protein plays keys roles in a number of processes integral to the development of neuronal function and behaviour.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.54

    The ζ Toxin Induces a Set of Protective Responses and Dormancy

    Get PDF
    The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε2) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20–30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1–5×10−5). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them. RelA contributes to enforce toxin-induced dormancy. At later times, free active ζ decreases synthesis of macromolecules and releases intracellular K+. We propose that ζ toxin induces reversible protective dormancy and permeation to PI, and expression of ε2 antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction (∼10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo synthesis of ε2 antitoxin, which blocks ATP binding by ζ toxin, thereby inhibiting its phosphotransferase activity

    Epigenetic Transitions and Knotted Solitons in Stretched Chromatin

    Get PDF
    The spreading and regulation of epigenetic marks on chromosomes is crucial to establish and maintain cellular identity. Nonetheless, the dynamical mechanism leading to the establishment and maintenance of a given, cell-line specific, epigenetic pattern is still poorly understood. In this work we propose, and investigate in silico, a possible experimental strategy to illuminate the interplay between 3D chromatin structure and epigenetic dynamics. We consider a set-up where a reconstituted chromatin fibre is stretched at its two ends (e.g., by laser tweezers), while epigenetic enzymes (writers) and chromatin-binding proteins (readers) are flooded into the system. We show that, by tuning the stretching force and the binding affinity of the readers for chromatin, the fibre undergoes a sharp transition between a stretched, epigenetically disordered, state and a crumpled, epigenetically coherent, one. We further investigate the case in which a knot is tied along the chromatin fibre, and find that the knotted segment enhances local epigenetic order, giving rise to "epigenetic solitons" which travel and diffuse along chromatin. Our results point to an intriguing coupling between 3D chromatin topology and epigenetic dynamics, which may be investigated via single molecule experiments.Comment: Accepted version; Supplementary movies can be found at http://www2.ph.ed.ac.uk/~dmichiel/KnottedSolitons.html and https://www.youtube.com/watch?v=Osghh9nEhe

    Nonlinear optical properties of C-60 with explicit time-dependent electron dynamics

    No full text
    An explicit electron dynamics approach has been used to calculate the nonlinear optical properties of C-60 and its radical anion. An external perturbation, in the form of an oscillating electric field, induces the time-evolution of the molecular wavefunction. The time-averaged instantaneous dipole moment of the systems gives the molecular response to perturbations of varying field intensities and frequency of oscillation. The polarizabilities and the second-order hyperpolarizabilties have been calculated and are in good qualitative agreement with experimentally available data. In line with previous theoretical and experimental studies, the nonlinear effect is enhanced for the radical species
    corecore