1,479 research outputs found

    Visual parameter optimisation for biomedical image processing

    Get PDF
    Background: Biomedical image processing methods require users to optimise input parameters to ensure high quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results: We present a visualisation method that transforms users’ ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches

    Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among Canadian preschool-aged children using compositional analyses

    Get PDF
    Abstract Background Sleep duration, sedentary behaviour, and physical activity are three co-dependent behaviours that fall on the movement/non-movement intensity continuum. Compositional data analyses provide an appropriate method for analyzing the association between co-dependent movement behaviour data and health indicators. The objectives of this study were to examine: (1) the combined associations of the composition of time spent in sleep, sedentary behaviour, light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA) with adiposity indicators; and (2) the association of the time spent in sleep, sedentary behaviour, LPA, or MVPA with adiposity indicators relative to the time spent in the other behaviours in a representative sample of Canadian preschool-aged children. Methods Participants were 552 children aged 3 to 4 years from cycles 2 and 3 of the Canadian Health Measures Survey. Sedentary time, LPA, and MVPA were measured with Actical accelerometers (Philips Respironics, Bend, OR USA), and sleep duration was parental reported. Adiposity indicators included waist circumference (WC) and body mass index (BMI) z-scores based on World Health Organization growth standards. Compositional data analyses were used to examine the cross-sectional associations. Results The composition of movement behaviours was significantly associated with BMI z-scores (p = 0.006) but not with WC (p = 0.718). Further, the time spent in sleep (BMI z-score: γ sleep  = −0.72; p = 0.138; WC: γ sleep  = −1.95; p = 0.285), sedentary behaviour (BMI z-score: γ SB  = 0.19; p = 0.624; WC: γ SB  = 0.87; p = 0.614), LPA (BMI z-score: γ LPA  = 0.62; p = 0.213, WC: γ LPA  = 0.23; p = 0.902), or MVPA (BMI z-score: γ MVPA  = −0.09; p = 0.733, WC: γ MVPA  = 0.08; p = 0.288) relative to the other behaviours was not significantly associated with the adiposity indicators. Conclusions This study is the first to use compositional analyses when examining associations of co-dependent sleep duration, sedentary time, and physical activity behaviours with adiposity indicators in preschool-aged children. The overall composition of movement behaviours appears important for healthy BMI z-scores in preschool-aged children. Future research is needed to determine the optimal movement behaviour composition that should be promoted in this age group

    Fluorescence characterization of clinically-important bacteria

    Get PDF
    Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination

    Effects of endocrine disrupting chemicals on expression of phospholipid hydroperoxide glutathione peroxidase mRNA in rat testes

    Get PDF
    Phospholipid hydroperoxide glutathione peroxidase (PHGPx), an antioxidative selenoprotein, is modulated by estrogen in the testis and oviduct. To examine whether potential endocrine disrupting chemicals (EDCs) affect the microenvironment of the testes, the expression patterns of PHGPx mRNA and histological changes were analyzed in 5-week-old Sprague-Dawley male rats exposed to several EDCs such as an androgenic compound [testosterone (50, 200, and 1,000 µg/kg)], anti-androgenic compounds [flutamide (1, 5, and 25 mg/kg), ketoconazole (0.2 and 1 mg/kg), and diethylhexyl phthalate (10, 50, and 250 mg/kg)], and estrogenic compounds [nonylphenol (10, 50, 100, and 250 mg/kg), octylphenol (10, 50, and 250 mg/kg), and diethylstilbestrol (10, 20, and 40 µg/kg)] daily for 3 weeks via oral administration. Mild proliferation of germ cells and hyperplasia of interstitial cells were observed in the testes of the flutamide-treated group and deletion of the germinal epithelium and sloughing of germ cells were observed in testes of the diethylstilbestrol-treated group. Treatment with testosterone was shown to slightly decrease PHGPx mRNA levels in testes by the reverse transcriptionpolymerase chain reaction. However, anti-androgenic compounds (flutamide, ketoconazole, and diethylhexyl phthalate) and estrogenic compounds (nonylphenol, octylphenol, and diethylstilbestrol) significantly upregulated PHGPx mRNA in the testes (p < 0.05). These findings indicate that the EDCs might have a detrimental effect on spermatogenesis via abnormal enhancement of PHGPx expression in testes and that PHGPx is useful as a biomarker for toxicity screening of estrogenic or antiandrogenic EDCs in testes

    Influenza Virus Infection of the Murine Uterus: A New Model for Antiviral Immunity in the Female Reproductive Tract

    Full text link
    Secretory IgA (S-IgA) mediates local immunity to influenza virus in the murine upper respiratory tract and may play an important role in local immunity to various microorganisms in the female reproductive tract as well. Although the presence of IgA in cervicovaginal or uterine secretions has been correlated with immunity to a number of pathogens, there has been no direct demonstration of the mediation of uterine antiviral immunity by S-IgA. Influenza virus, although not a normal pathogen of the reproductive tract, was used to develop a model for the investigation of mucosal immunity in the uterus. PR8 (H1N1) influenza virus injected into the ovarian bursa of BALB/c mice grew well, with peak titers between days 3 and 5. Intravenous injection of polymeric IgA anti-influenza virus monoclonal antibody before or 30 min after viral challenge protected mice against viral infection. We believe this work to be the first direct demonstration of S-IgA-mediated antiviral uterine immunity. It provides a model for further investigation of immunity in the female reproductive tract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63226/1/vim.2006.19.613.pd

    Unnecessary use of fluoroquinolone antibiotics in hospitalized patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fluoroquinolones are among the most commonly prescribed antimicrobials and are an important risk factor for colonization and infection with fluoroquinolone-resistant gram-negative bacilli and for <it>Clostridium difficile </it>infection (CDI). In this study, our aim was to determine current patterns of inappropriate fluoroquinolone prescribing among hospitalized patients, and to test the hypothesis that longer than necessary treatment durations account for a significant proportion of unnecessary fluoroquinolone use.</p> <p>Methods</p> <p>We conducted a 6-week prospective, observational study to determine the frequency of, reasons for, and adverse effects associated with unnecessary fluoroquinolone use in a tertiary-care academic medical center. For randomly-selected adult inpatients receiving fluoroquinolones, therapy was determined to be necessary or unnecessary based on published guidelines or standard principles of infectious diseases. Adverse effects were determined based on chart review 6 weeks after completion of therapy.</p> <p>Results</p> <p>Of 1,773 days of fluoroquinolone therapy, 690 (39%) were deemed unnecessary. The most common reasons for unnecessary therapy included administration of antimicrobials for non-infectious or non-bacterial syndromes (292 days-of-therapy) and administration of antimicrobials for longer than necessary durations (234 days-of-therapy). The most common syndrome associated with unnecessary therapy was urinary tract infection or asymptomatic bacteriuria (30% of all unnecessary days-of-therapy). Twenty-seven percent (60/227) of regimens were associated with adverse effects possibly attributable to therapy, including gastrointestinal adverse effects (14% of regimens), colonization by resistant pathogens (8% of regimens), and CDI (4% of regimens).</p> <p>Conclusions</p> <p>In our institution, 39% of all days of fluoroquinolone therapy were unnecessary. Interventions that focus on improving adherence with current guidelines for duration of antimicrobial therapy and for management of urinary syndromes could significantly reduce overuse of fluoroquinolones.</p
    corecore