234 research outputs found
"That never would have occurred to me": a qualitative study of medical students' views of a cultural competence curriculum
BACKGROUND: The evidence is mixed regarding the efficacy of cultural competence curricula in developing learners' knowledge, attitudes and skills. More research is needed to better understand both the strengths and shortcomings of existing curricula from the perspective of learners in order to improve training. METHODS: We conducted three focus groups with medical students in their first year of clinical training to assess their perceptions of the cultural competence curriculum at a public university school of medicine. RESULTS: Students evaluated the informal curriculum as a more important source of learning about cultural competence than the formal curriculum. In terms of bias in both self and others, the cultural competence curriculum increased awareness, but was less effective in teaching specific interventional skills. Students also noted that the cultural competence curriculum did not always sufficiently help them find a balance between group-specific knowledge and respect for individual differences. Despite some concerns as to whether political correctness characterized the cultural competence curriculum, it was also seen as a way to rehumanize the medical education experience. CONCLUSION: Future research needs to pay attention to issues such as perceived relevance, stereotyping, and political correctness in developing cross-cultural training programs
A High Throughput Screen Identifies Nefopam as Targeting Cell Proliferation in β-Catenin Driven Neoplastic and Reactive Fibroproliferative Disorders
Fibroproliferative disorders include neoplastic and reactive processes (e.g. desmoid tumor and hypertrophic scars). They are characterized by activation of β-catenin signaling, and effective pharmacologic approaches are lacking. Here we undertook a high throughput screen using human desmoid tumor cell cultures to identify agents that would inhibit cell viability in tumor cells but not normal fibroblasts. Agents were then tested in additional cell cultures for an effect on cell proliferation, apoptosis, and β-catenin protein level. Ultimately they were tested in Apc1638N mice, which develop desmoid tumors, as well as in wild type mice subjected to full thickness skin wounds. The screen identified Neofopam, as an agent that inhibited cell numbers to 42% of baseline in cell cultures from β-catenin driven fibroproliferative disorders. Nefopam decreased cell proliferation and β-catenin protein level to 50% of baseline in these same cell cultures. The half maximal effective concentration in-vitro was 0.5 uM and there was a plateau in the effect after 48 hours of treatment. Nefopam caused a 45% decline in tumor number, 33% decline in tumor volume, and a 40% decline in scar size when tested in mice. There was also a 50% decline in β-catenin level in-vivo. Nefopam targets β-catenin protein level in mesenchymal cells in-vitro and in-vivo, and may be an effective therapy for neoplastic and reactive processes driven by β-catenin mediated signaling
Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells
Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity
Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats
<p>Abstract</p> <p>Background</p> <p>CXCR4 is the receptor for chemokine CXCL12 and reportedly plays an important role in systemic vascular repair and remodeling, but the role of CXCR4 in development of pulmonary hypertension and vascular remodeling has not been fully understood.</p> <p>Methods</p> <p>In this study we investigated the role of CXCR4 in the development of pulmonary hypertension and vascular remodeling by using a CXCR4 inhibitor AMD3100 and by electroporation of CXCR4 shRNA into bone marrow cells and then transplantation of the bone marrow cells into rats.</p> <p>Results</p> <p>We found that the CXCR4 inhibitor significantly decreased chronic hypoxia-induced pulmonary hypertension and vascular remodeling in rats and, most importantly, we found that the rats that were transplanted with the bone marrow cells electroporated with CXCR4 shRNA had significantly lower mean pulmonary pressure (mPAP), ratio of right ventricular weight to left ventricular plus septal weight (RV/(LV+S)) and wall thickness of pulmonary artery induced by chronic hypoxia as compared with control rats.</p> <p>Conclusions</p> <p>The hypothesis that CXCR4 is critical in hypoxic pulmonary hypertension in rats has been demonstrated. The present study not only has shown an inhibitory effect caused by systemic inhibition of CXCR4 activity on pulmonary hypertension, but more importantly also has revealed that specific inhibition of the CXCR4 in bone marrow cells can reduce pulmonary hypertension and vascular remodeling via decreasing bone marrow derived cell recruitment to the lung in hypoxia. This study suggests a novel therapeutic approach for pulmonary hypertension by inhibiting bone marrow derived cell recruitment.</p
An Osteoblast-Derived Proteinase Controls Tumor Cell Survival via TGF-beta Activation in the Bone Microenvironment
Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment.To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays).Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases
HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation
APOBEC3 (A3) family proteins are DNA cytosine deaminases recognized for contributing to
HIV-1 restriction and mutation. Prior studies have demonstrated that A3D, A3F, and A3G
enzymes elicit a robust anti-HIV-1 effect in cell cultures and in humanized mouse models.
Human A3H is polymorphic and can be categorized into three phenotypes: stable, intermediate,
and unstable. However, the anti-viral effect of endogenous A3H in vivo has yet to be
examined. Here we utilize a hematopoietic stem cell-transplanted humanized mouse model
and demonstrate that stable A3H robustly affects HIV-1 fitness in vivo. In contrast, the selection
pressure mediated by intermediate A3H is relaxed. Intriguingly, viral genomic RNA
sequencing reveled that HIV-1 frequently adapts to better counteract stable A3H during replication
in humanized mice. Molecular phylogenetic analyses and mathematical modeling
suggest that stable A3H may be a critical factor in human-to-human viral transmission.
Taken together, this study provides evidence that stable variants of A3H impose selective
pressure on HIV-1
The equilibria that allow bacterial persistence in human hosts
We propose that microbes that have developed persistent relationships with human hosts have evolved cross-signalling mechanisms that permit homeostasis that conforms to Nash equilibria and, more specifically, to evolutionarily stable strategies. This implies that a group of highly diverse organisms has evolved within the changing contexts of variation in effective human population size and lifespan, shaping the equilibria achieved, and creating relationships resembling climax communities. We propose that such ecosystems contain nested communities in which equilibrium at one level contributes to homeostasis at another. The model can aid prediction of equilibrium states in the context of further change: widespread immunodeficiency, changing population densities, or extinctions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62883/1/nature06198.pd
- …