311 research outputs found
Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada
The mineral chemistry of melanite garnets from the Crowsnest volcanic rocks of SW Alberta, Canada, has been investigated by using electron microprobe scans, quantitative analyses and multivariate statistical analysis. The garnets occur with aegirine-augite, sanidine, analcite and rare plagioclase as phenocrysts in trachyte and phonolite flows, agglomerates and tuffs. Wavelength dispersive microprobe scans reveal complex zonation patterns, both normal and oscillatory. The results of fifty quantitative analyses were subjected to R-mode factor analysis to delineate the chemical exchanges producing the zonation. The chemical zonation of the garnets may be attributed to four independent binary exchanges; Al-Fe3+, Si-Ti, Ca-Mn and Mg-Fe2+. The stoichiometry of these garnets, based on microprobe and wet chemical Fe analyses, combined with the strongly antithetic behavior of Si and Ti lead us to infer that the Ti in these garnets is dominantly tetravalent. It is clear from this study that quantitative modelling of the processes of crystal growth and zonation of melanite garnets in alkaline, undersaturated igneous rocks should be aimed at simulating the four chemical exchanges listed above
Correction to: The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease.
Following publication of the original article [1], the author identified an error in Fig. 4E. The data and statistics were correct, but the synaptophysin blot was incorrect. The incorrect (Fig. 1) and correct figure (Fig. 2) are shown in this correction article. (Figure presented.)
The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease
Elevated iron in the SNpc may play a key role in Parkinson's disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions. In vitro, PBT434 was far less potent than deferiprone or deferoxamine at lowering cellular iron levels, yet was found to inhibit iron-mediated redox activity and iron-mediated aggregation of α-synuclein, a protein that aggregates in the neuropathology. In vivo, PBT434 did not deplete tissue iron stores in normal rodents, yet prevented loss of substantia nigra pars compacta neurons (SNpc), lowered nigral α-synuclein accumulation, and rescued motor performance in mice exposed to the Parkinsonian toxins 6-OHDA and MPTP, and in a transgenic animal model (hA53T α-synuclein) of PD. These improvements were associated with reduced markers of oxidative damage, and increased levels of ferroportin (an iron exporter) and DJ-1. We conclude that compounds designed to target a pool of pathological iron that is not held in high-affinity complexes in the tissue can maintain the survival of SNpc neurons and could be disease-modifying in PD
Pyrolysed almond shells used as electrodes in microbial electrolysis cell
9 p.The large cost of components used in microbial electrolysis cell (MEC) reactors represents an important limitation that is delaying
the commercial implementation of this technology. In this work, we explore the feasibility of using pyrolysed almond shells (PAS)
as a material for producing low-cost anodes for use in MEC systems. This was done by comparing the microbial populations that
developed on the surface of PAS bioanodes with those present on the carbon felt (CF) bioanodes traditionally used in MECs. Raw
almond shells were pyrolysed at three different temperatures, obtaining the best conductive material at the highest temperature
(1000 °C). The behaviour of this material was then verified using a single-chamber cell. Subsequently, the main test was carried out using two-chamber cells and the microbial populations extant on each of the bioanodes were analysed. High-throughput sequencing of the 16S rRNA gene for eubacterial populations was carried out in order to compare the microbial communities attached to each type of electrode. The microbial populations on each electrode were also quantified by real-time polymerase chain reaction (realtime PCR) to determine the amount of bacteria capable of growing on the electrodes’surface. The results indicated that the newly developed PAS bioanodes possess a biofilm similar to those found on the surface of traditional CF electrodes.
This research was possible thanks to the financial support of the Junta de Castilla y León, and was financed by European Regional Development Funds (LE320P18). C. B. thanks the Spanish Ministerio de Educación, Cultura y Deporte for support in the form of an FPI fellowship grant (Ref #: BES-2016-078329)
The Classic: Bone Morphogenetic Protein
This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is © 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392–1406
Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction
Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Here, we demonstrate physical and mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si structures at the electrode level for high-performance Li-ion batteries.open1
Non-allergic rhinitis: a case report and review
Rhinitis is characterized by rhinorrhea, sneezing, nasal congestion, nasal itch and/or postnasal drip. Often the first step in arriving at a diagnosis is to exclude or diagnose sensitivity to inhalant allergens. Non-allergic rhinitis (NAR) comprises multiple distinct conditions that may even co-exist with allergic rhinitis (AR). They may differ in their presentation and treatment. As well, the pathogenesis of NAR is not clearly elucidated and likely varied. There are many conditions that can have similar presentations to NAR or AR, including nasal polyps, anatomical/mechanical factors, autoimmune diseases, metabolic conditions, genetic conditions and immunodeficiency. Here we present a case of a rare condition initially diagnosed and treated as typical allergic rhinitis vs. vasomotor rhinitis, but found to be something much more serious. This case illustrates the importance of maintaining an appropriate differential diagnosis for a complaint routinely seen as mundane. The case presentation is followed by a review of the potential causes and pathogenesis of NAR
Efficacy of c-Met inhibitor for advanced prostate cancer
<p>Abstract</p> <p>Background</p> <p>Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer.</p> <p>Methods</p> <p>We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression.</p> <p>Results</p> <p>We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration.</p> <p>Conclusions</p> <p>The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer.</p
A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate
Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 106 g.mol−1) compared to the native (Mw ~ 1.2 × 106 g.mol−1). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 106 g.mol−1), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution
- …