2,832 research outputs found
A habituation account of change detection in same/different judgments
We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation
Multidimensional cluster states using a single spin-photon interface coupled strongly to an intrinsic nuclear register
Photonic cluster states are a powerful resource for measurement-based quantum
computing and loss-tolerant quantum communication. Proposals to generate
multi-dimensional lattice cluster states have identified coupled spin-photon
interfaces, spin-ancilla systems, and optical feedback mechanisms as potential
schemes. Following these, we propose the generation of multi-dimensional
lattice cluster states using a single, efficient spin-photon interface coupled
strongly to a nuclear register. Our scheme makes use of the contact hyperfine
interaction to enable universal quantum gates between the interface spin and a
local nuclear register and funnels the resulting entanglement to photons via
the spin-photon interface. Among several quantum emitters, we identify the
silicon-29 vacancy centre in diamond, coupled to a nanophotonic structure, as
possessing the right combination of optical quality and spin coherence for this
scheme. We show numerically that using this system a 2x5-sized cluster state
with a lower-bound fidelity of 0.5 and repetition rate of 65 kHz is achievable
under currently realised experimental performances and with feasible technical
overhead. Realistic gate improvements put 100-photon cluster states within
experimental reach
Early warning system based on data mining to identify crime patterns
The analysis of criminal information is critical for the purpose of
preventing the occurrence of offenses, so the crime records committed in the
past are analyzed including perpetrators. The main objective was to identify
crime patterns in the city of Bogota, Colombia, supported using Early Warning
System based on data mining (CRISP-DM method). The research results show
the identification of 12 different criminal profiles demonstrating that the Early
Warning System is applicable since it managed to significantly reduce the time
devoted to the processes of registering complaints and searching for criminal
profiles.Universidad Peruana de Ciencias Aplicadas, Universidad de la Costa, Corporación Universitaria Latinoamericana
Gene expression drives the evolution of dominance.
Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels
lp-Recovery of the Most Significant Subspace among Multiple Subspaces with Outliers
We assume data sampled from a mixture of d-dimensional linear subspaces with
spherically symmetric distributions within each subspace and an additional
outlier component with spherically symmetric distribution within the ambient
space (for simplicity we may assume that all distributions are uniform on their
corresponding unit spheres). We also assume mixture weights for the different
components. We say that one of the underlying subspaces of the model is most
significant if its mixture weight is higher than the sum of the mixture weights
of all other subspaces. We study the recovery of the most significant subspace
by minimizing the lp-averaged distances of data points from d-dimensional
subspaces, where p>0. Unlike other lp minimization problems, this minimization
is non-convex for all p>0 and thus requires different methods for its analysis.
We show that if 0<p<=1, then for any fraction of outliers the most significant
subspace can be recovered by lp minimization with overwhelming probability
(which depends on the generating distribution and its parameters). We show that
when adding small noise around the underlying subspaces the most significant
subspace can be nearly recovered by lp minimization for any 0<p<=1 with an
error proportional to the noise level. On the other hand, if p>1 and there is
more than one underlying subspace, then with overwhelming probability the most
significant subspace cannot be recovered or nearly recovered. This last result
does not require spherically symmetric outliers.Comment: This is a revised version of the part of 1002.1994 that deals with
single subspace recovery. V3: Improved estimates (in particular for Lemma 3.1
and for estimates relying on it), asymptotic dependence of probabilities and
constants on D and d and further clarifications; for simplicity it assumes
uniform distributions on spheres. V4: minor revision for the published
versio
Pathological and ecological host consequences of infection by an introduced fish parasite
The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ15N and δ13C) revealed trophic impacts associated with infection, particularly for δ15N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ15N and δ13C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s−1) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite
Measurements in two bases are sufficient for certifying high-dimensional entanglement
High-dimensional encoding of quantum information provides a promising method
of transcending current limitations in quantum communication. One of the
central challenges in the pursuit of such an approach is the certification of
high-dimensional entanglement. In particular, it is desirable to do so without
resorting to inefficient full state tomography. Here, we show how carefully
constructed measurements in two bases (one of which is not orthonormal) can be
used to faithfully and efficiently certify bipartite high-dimensional states
and their entanglement for any physical platform. To showcase the practicality
of this approach under realistic conditions, we put it to the test for photons
entangled in their orbital angular momentum. In our experimental setup, we are
able to verify 9-dimensional entanglement for a pair of photons on a
11-dimensional subspace each, at present the highest amount certified without
any assumptions on the state.Comment: 11+14 pages, 2+7 figure
Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair
Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing
Who should be prioritized for renal transplantation?: Analysis of key stakeholder preferences using discrete choice experiments
Background
Policies for allocating deceased donor kidneys have recently shifted from allocation based on Human Leucocyte Antigen (HLA) tissue matching in the UK and USA. Newer allocation algorithms incorporate waiting time as a primary factor, and in the UK, young adults are also favoured. However, there is little contemporary UK research on the views of stakeholders in the transplant process to inform future allocation policy. This research project aimed to address this issue.
Methods
Discrete Choice Experiment (DCE) questionnaires were used to establish priorities for kidney transplantation among different stakeholder groups in the UK. Questionnaires were targeted at patients, carers, donors / relatives of deceased donors, and healthcare professionals. Attributes considered included: waiting time; donor-recipient HLA match; whether a recipient had dependents; diseases affecting life expectancy; and diseases affecting quality of life.
Results
Responses were obtained from 908 patients (including 98 ethnic minorities); 41 carers; 48 donors / relatives of deceased donors; and 113 healthcare professionals. The patient group demonstrated statistically different preferences for every attribute (i.e. significantly different from zero) so implying that changes in given attributes affected preferences, except when prioritizing those with no rather than moderate diseases affecting quality of life. The attributes valued highly related to waiting time, tissue match, prioritizing those with dependents, and prioritizing those with moderate rather than severe diseases affecting life expectancy. Some preferences differed between healthcare professionals and patients, and ethnic minority and non-ethnic minority patients. Only non-ethnic minority patients and healthcare professionals clearly prioritized those with better tissue matches.
Conclusions
Our econometric results are broadly supportive of the 2006 shift in UK transplant policy which emphasized prioritizing the young and long waiters. However, our findings suggest the need for a further review in the light of observed differences in preferences amongst ethnic minorities, and also because those with dependents may be a further priority.</p
EquiFACS: the Equine Facial Action Coding System
Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high—and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices
- …