311 research outputs found

    Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system

    Get PDF
    Author Posting. © Nature Publishing Group, 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 450 (2007): 407-410, doi:10.1038/nature06273.Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales

    Signatures of Star-planet interactions

    Full text link
    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within \sim10 stellar radii (\sim0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfv\'enic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The magnetic interactions appear as enhanced stellar activity modulated by the planet as it orbits the star rather than only by stellar rotation. These SPI effects are informative for the study of the internal dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet and rotational evolution of the star. As phase-resolved observational techniques are applied to a large statistical sample of hot Jupiter systems, extensions to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs become possible. In these systems, star-planet separations of tens of stellar radii begin to coincide with the radiative habitable zone where planetary magnetic fields are likely a necessary condition for surface habitability.Comment: Accepted for publication in the handbook of exoplanet

    Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets

    Get PDF
    The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal of Astrobiology (2019

    Residential PM2.5 exposure and the nasal methylome in children

    Get PDF
    Rationale: PM2.5-induced adverse effects on respiratory health may be driven by epigenetic modifications in airway cells. The potential impact of exposure duration on epigenetic alterations in the airways is not yet known. Objectives: We aimed to study associations of fine particulate matter PM2.5 exposure with DNA methylation in nasal cells. Methods: We conducted nasal epigenome-wide association analyses within 503 children from Project Viva (mean age 12.9 y), and examined various exposure durations (1-day, 1-week, 1-month, 3-months and 1-year) prior to nasal sampling. We used residential addresses to estimate average daily PM2.5 at 1 km resolution. We collected nasal swabs from the anterior nares and measured DNA methylation (DNAm) using the Illumina Methylation EPIC BeadChip. We tested 719,075 high quality autosomal CpGs using CpG-by-CpG and regional DNAm analyses controlling for multiple comparisons, and adjusted for maternal education, household smokers, child sex, race/ethnicity, BMI z-score, age, season at sample collection and cell-type heterogeneity. We further corrected for bias and genomic inflation. We tested for replication in a cohort from the Netherlands (PIAMA). Results: In adjusted analyses, we found 362 CpGs associated with 1-year PM2.5 (FDR < 0.05), 20 CpGs passing Bonferroni correction (P < 7.0 x 10(-8)) and 10 Differentially Methylated Regions (DMRs). In 445 PIAMA participants (mean age 16.3 years) 11 of 203 available CpGs replicated at P < 0.05. We observed differential DNAm at/ near genes implicated in cell cycle, immune and inflammatory responses. There were no CpGs or regions associated with PM2.5 levels at 1-day, 1-week, or 1-month prior to sample collection, although 2 CpGs were associated with past 3-month PM2.5. Conclusion: We observed wide-spread DNAm variability associated with average past year PM2.5 exposure but we did not detect associations with shorter-term exposure. Our results suggest that nasal DNAm marks reflect chronic air pollution exposure

    ADP Ribosylation Factor Like 2 (Arl2) Regulates Breast Tumor Aggressivity in Immunodeficient Mice

    Get PDF
    We have previously reported that ADP ribosylation factor like 2 (Arl2), a small GTPase, content influences microtubule dynamics and cell cycle distribution in breast tumor cells, as well as the degree and distribution of phosphorylated P53. Here we show, in two different human breast adenocarcinoma models, that Arl2 content has a major impact on breast tumor cell aggressivity both in vitro and in vivo. Cells with reduced content of Arl2 displayed reduced contact inhibition, increased clonogenic or cluster formation as well as a proliferative advantage over control cells in an in vitro competition assay. These cells also caused larger tumors in SCID mice, a phenotype which was mimicked by the in vivo administration of siRNA directed against Arl2. Cells with increased Arl2 content displayed reduced aggressivity, both in vitro and in vivo, with enhanced necrosis and were also found to contain increased PP2A phosphatase activity. A rt-PCR analysis of fresh human tumor breast samples suggested that low Arl2 expression was associated with larger tumor size and greater risk of lymph node involvement at diagnosis. These data underline the role of Arl2, a small GTPase, as an important regulator of breast tumor cell aggressivity, both in vitro and in vivo

    X-ray Studies of Exoplanets: A 2020 Decadal Survey White Paper

    Get PDF
    Over the last two decades, the discovery of exoplanets has fundamentally changed our perception of the universe and humanity's place within it. Recent work indicates that a solar system's X-ray and high energy particle environment is of fundamental importance to the formation and development of the atmospheres of close-in planets such as hot Jupiters, and Earth-like planets around M stars. X-ray imaging and spectroscopy provide powerful and unique windows into the high energy flux that an exoplanet experiences, and X-ray photons also serve as proxies for potentially transfigurative coronal mass ejections. Finally, if the host star is a bright enough X-ray source, transit measurements akin to those in the optical and infrared are possible and allow for direct characterization of the upper atmospheres of exoplanets. In this brief white paper, we discuss contributions to the study of exoplanets and their environs which can be made by X-ray data of increasingly high quality that are achievable in the next 10--15 years

    Training family physicians and residents in family medicine in shared decision making to improve clinical decisions regarding the use of antibiotics for acute respiratory infections: protocol for a clustered randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore ways to reduce the overuse of antibiotics for acute respiratory infections (ARIs), we conducted a pilot clustered randomized controlled trial (RCT) to evaluate DECISION+, a training program in shared decision making (SDM) for family physicians (FPs). This pilot project demonstrated the feasibility of conducting a large clustered RCT and showed that DECISION+ reduced the proportion of patients who decided to use antibiotics immediately after consulting their physician. Consequently, the objective of this study is to evaluate, in patients consulting for ARIs, if exposure of physicians to a modified version of DECISION+, DECISION+2, would reduce the proportion of patients who decide to use antibiotics immediately after consulting their physician.</p> <p>Methods/design</p> <p>The study is a multi-center, two-arm, parallel clustered RCT. The 12 family practice teaching units (FPTUs) in the network of the Department of Family Medicine and Emergency Medicine of Université Laval will be randomized to a DECISION+2 intervention group (experimental group) or to a no-intervention control group. These FPTUs will recruit patients consulting family physicians and residents in family medicine enrolled in the study. There will be two data collection periods: pre-intervention (baseline) including 175 patients with ARIs in each study arm, and post-intervention including 175 patients with ARIs in each study arm (total n = 700). The primary outcome will be the proportion of patients reporting a decision to use antibiotics immediately after consulting their physician. Secondary outcome measures include: 1) physicians and patients' decisional conflict; 2) the agreement between the parties' decisional conflict scores; and 3) perception of patients and physicians that SDM occurred. Also in patients, at 2 weeks follow-up, adherence to the decision, consultation for the same reason, decisional regret, and quality of life will be assessed. Finally, in both patients and physicians, intention to engage in SDM in future clinical encounters will be assessed. Intention-to-treat analyses will be applied and account for the nested design of the trial will be taken into consideration.</p> <p>Discussion</p> <p>DECISION+2 has the potential to reduce antibiotics use for ARIs by priming physicians and patients to share decisional process and empowering patients to make informed, value-based decisions.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="NCT01116076">NCT01116076</a></p

    Predictors of Poor CD4 and Weight Recovery in HIV-Infected Children Initiating ART in South Africa

    Get PDF
    Objective: To identify baseline demographic and clinical risk factors associated with poor CD4 and weight response after initiation of antiretroviral therapy (ART) in a cohort of human immunodeficiency virus (HIV)-infected children in KwaZulu-Natal, South Africa. Methods: We performed a retrospective cohort study of 674 children initiating antiretroviral therapy at McCord and St. Mary’s hospitals in KwaZulu-Natal, South Africa, from August 2003 to December 2008. We extracted data from paper charts and electronic medical records to assess risk factors associated with CD4 and weight response using logistic regression. Results: From the initial cohort of 901 children,10 years old initiating ART between August 2003 and December 2008, we analyzed 674 children with complete baseline data. Viral suppression rates (,400 copies/ml) were 84 % after six months of therapy and 88 % after 12 months of therapy. Seventy-three percent of children achieved CD4 recovery after six months and 89 % after 12 months. Weight-for-age Z-score (WAZ) improvements were seen in 58 % of children after six months of ART and 64 % after 12 months. After six months of ART, lower baseline hemoglobin (p = 0.037), presence of chronic diarrhea (p = 0.007), and virologic failure (p = 0.046) were all associated with poor CD4 recovery by multivariate logistic regression. After 12 months of ART, poor CD4 recovery was associated with higher baseline CD4 % (p = 0.005), chronic diarrhe
    corecore