573 research outputs found
Speed Partitioning for Indexing Moving Objects
Indexing moving objects has been extensively studied in the past decades.
Moving objects, such as vehicles and mobile device users, usually exhibit some
patterns on their velocities, which can be utilized for velocity-based
partitioning to improve performance of the indexes. Existing velocity-based
partitioning techniques rely on some kinds of heuristics rather than
analytically calculate the optimal solution. In this paper, we propose a novel
speed partitioning technique based on a formal analysis over speed values of
the moving objects. We first show that speed partitioning will significantly
reduce the search space expansion which has direct impacts on query performance
of the indexes. Next we formulate the optimal speed partitioning problem based
on search space expansion analysis and then compute the optimal solution using
dynamic programming. We then build the partitioned indexing system where
queries are duplicated and processed in each index partition. Extensive
experiments demonstrate that our method dramatically improves the performance
of indexes for moving objects and outperforms other state-of-the-art
velocity-based partitioning approaches
Image Analysis Enhanced Event Detection from Geo-tagged Tweet Streams
Events detected from social media streams often include early signs of
accidents, crimes or disasters. Therefore, they can be used by related parties
for timely and efficient response. Although significant progress has been made
on event detection from tweet streams, most existing methods have not
considered the posted images in tweets, which provide richer information than
the text, and potentially can be a reliable indicator of whether an event
occurs or not. In this paper, we design an event detection algorithm that
combines textual, statistical and image information, following an unsupervised
machine learning approach. Specifically, the algorithm starts with semantic and
statistical analyses to obtain a list of tweet clusters, each of which
corresponds to an event candidate, and then performs image analysis to separate
events from non-events---a convolutional autoencoder is trained for each
cluster as an anomaly detector, where a part of the images are used as the
training data and the remaining images are used as the test instances. Our
experiments on multiple datasets verify that when an event occurs, the mean
reconstruction errors of the training and test images are much closer, compared
with the case where the candidate is a non-event cluster. Based on this
finding, the algorithm rejects a candidate if the difference is larger than a
threshold. Experimental results over millions of tweets demonstrate that this
image analysis enhanced approach can significantly increase the precision with
minimum impact on the recall.Comment: 12 pages, 4 figure
Self-stabilizing Overlays for high-dimensional Monotonic Searchability
We extend the concept of monotonic searchability for self-stabilizing systems
from one to multiple dimensions. A system is self-stabilizing if it can recover
to a legitimate state from any initial illegal state. These kind of systems are
most often used in distributed applications. Monotonic searchability provides
guarantees when searching for nodes while the recovery process is going on.
More precisely, if a search request started at some node succeeds in
reaching its destination , then all future search requests from to
succeed as well. Although there already exists a self-stabilizing protocol for
a two-dimensional topology and an universal approach for monotonic
searchability, it is not clear how both of these concepts fit together
effectively. The latter concept even comes with some restrictive assumptions on
messages, which is not the case for our protocol. We propose a simple novel
protocol for a self-stabilizing two-dimensional quadtree that satisfies
monotonic searchability. Our protocol can easily be extended to higher
dimensions and offers routing in hops for any search
request
The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules
Recent studies have demonstrated that the CD3-ζ subunit of the T cell antigen receptor (TCR) complex is involved in signal transduction. However, the function of the remaining invariant subunits, CD3-γ, -δ, and , is still poorly understood. To examine their role in TCR function, we have constructed TCR/CD3 complexes devoid of functional ζ subunit and showed that they are still able to trigger the production of interleukin-2 in response to antigen or superantigen. These data, together with previous results, indicate that the TCR/CD3 complex is composed of at least two parallel transducing units, made of the γδ and ζ chains, respectively, Furthermore, the analysis of partially truncated ζ chains has led us to individualize a functional domain that may have constituted the building block of most of the transducing subunits associated with antigen receptors and some Fc receptors
Increased retention of functional fusions to toxic genes in new two-hybrid libraries of the E. coli strain MG1655 and B. subtilis strain 168 genomes, prepared without passaging through E. coli
BACKGROUND: Cloning of genes in expression libraries, such as the yeast two-hybrid system (Y2H), is based on the assumption that the loss of target genes is minimal, or at worst, managable. However, the expression of genes or gene fragments that are capable of interacting with E. coli or yeast gene products in these systems has been shown to be growth inhibitory, and therefore these clones are underrepresented (or completely lost) in the amplified library. RESULTS: Analysis of candidate genes as Y2H fusion constructs has shown that, while stable in E. coli and yeast for genetic studies, they are rapidly lost in growth conditions for genomic libraries. This includes the rapid loss of a fragment of the E. coli cell division gene ftsZ which encodes the binding site for ZipA and FtsA. Expression of this clone causes slower growth in E. coli. This clone is also rapidly lost in yeast, when expressed from a GAL1 promoter, relative to a vector control, but is stable when the promoter is repressed. We have demonstrated in this report that the construction of libraries for the E. coli and B. subtilis genomes without passaging through E. coli is practical, but the number of transformants is less than for libraries cloned using E. coli as a host. Analysis of several clones in the libraries that are strongly growth inhibitory in E. coli include genes for many essential cellular processes, such as transcription, translation, cell division, and transport. CONCLUSION: Expression of Y2H clones capable of interacting with E. coli and yeast targets are rapidly lost, causing a loss of complexity. The strategy for preparing Y2H libraries described here allows the retention of genes that are toxic when inappropriately expressed in E. coli, or yeast, including many genes that represent potential antibacterial targets. While these methods are generally applicable to the generation of Y2H libraries from any source, including mammalian and plant genomes, the potential of functional clones interacting with host proteins to inhibit growth would make this approach most relevant for the study of prokaryotic genomes
Dementia in Swedish Twins: Predicting Incident Cases
Thirty same-sex twin pairs were identified in which both members were assessed at baseline and one twin subsequently developed dementia, at least 3 years subsequent to the baseline measurement, while the partner remained cognitively intact for at least three additional years. Eighteen of the 30 cases were diagnosed with Alzheimer’s disease. Baseline assessments, conducted when twins’ average age was 70.6 (SD = 6.8), included a mailed questionnaire and in-person testing. Which twin would develop dementia was predicted by less favorable lipid values (higher apoB, ratio of apoB to apoA1, and total cholesterol), poorer grip strength, and—to a lesser extent—higher emotionality on the EAS Temperament Scale. Given the long preclinical period that characterizes Alzheimer’s disease, these findings may suggest late life risk factors for dementia, or may reflect changes that are part of preclinical disease
Discovering context-specific relationships from biological literature by using multi-level context terms
<p>Abstract</p> <p>Background</p> <p>The Swanson's ABC model is powerful to infer hidden relationships buried in biological literature. However, the model is inadequate to infer relations with context information. In addition, the model generates a very large amount of candidates from biological text, and it is a semi-automatic, labor-intensive technique requiring human expert's manual input. To tackle these problems, we incorporate context terms to infer relations between AB interactions and BC interactions.</p> <p>Methods</p> <p>We propose 3 steps to discover meaningful hidden relationships between drugs and diseases: 1) multi-level (gene, drug, disease, symptom) entity recognition, 2) interaction extraction (drug-gene, gene-disease) from literature, 3) context vector based similarity score calculation. Subsequently, we evaluate our hypothesis with the datasets of the "Alzheimer's disease" related 77,711 PubMed abstracts. As golden standards, PharmGKB and CTD databases are used. Evaluation is conducted in 2 ways: first, comparing precision of the proposed method and the previous method and second, analysing top 10 ranked results to examine whether highly ranked interactions are truly meaningful or not.</p> <p>Results</p> <p>The results indicate that context-based relation inference achieved better precision than the previous ABC model approach. The literature analysis also shows that interactions inferred by the context-based approach are more meaningful than interactions by the previous ABC model.</p> <p>Conclusions</p> <p>We propose a novel interaction inference technique that incorporates context term vectors into the ABC model to discover meaningful hidden relationships. By utilizing multi-level context terms, our model shows better performance than the previous ABC model.</p
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
- …