238 research outputs found

    Coherent Structures at the Ocean Surface in Convectively Unstable Conditions

    Get PDF
    The turbulent boundary layer at the ocean surface has some dynamical similarities to the atmospheric boundary layer. The atmospheric turbulent boundary layer may exhibit not only random fluctuations but also spatially coherent, organized motion. Thorpe conjectured that such organized motion should also be found in the upper ocean boundary layer in convectively unstable conditions. Here I report on observations made in the tropical Atlantic Ocean which confirm this view. Horizontal temperature profiles obtained at a depth of 2m at night revealed ramp-like structures. Vertical velocity profiles in the upper few metres of the ocean was determined using a free-rising profiler, and exhibited abrupt changes corresponding to sudden changes in temperature. These features are known to be characteristic of spatially coherent, organized motions in turbulent boundary layers

    Acute and Long-Term Effects of Hyperthermia in B16-F10 Melanoma Cells

    Get PDF
    OBJECTIVE: Hyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10. MATERIALS AND METHODS: Melanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction. RESULTS: Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G(2)/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells. CONCLUSION: The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure

    SOCS2-Induced Proteasome-Dependent TRAF6 Degradation: A Common Anti-Inflammatory Pathway for Control of Innate Immune Responses

    Get PDF
    Pattern recognition receptors and receptors for pro-inflammatory cytokines provide critical signals to drive the development of protective immunity to infection. Therefore, counter-regulatory pathways are required to ensure that overwhelming inflammation harm host tissues. Previously, we showed that lipoxins modulate immune response during infection, restraining inflammation during infectious diseases in an Aryl hydrocarbon receptor (AhR)/suppressors of cytokine signaling (SOCS)2-dependent-manner. Recently, Indoleamine-pyrrole 2,3- dioxygenase (IDO)-derived tryptophan metabolites, including L-kynurenine, were also shown to be involved in several counter-regulatory mechanisms. Herein, we addressed whether the intracellular molecular events induced by lipoxins mediating control of innate immune signaling are part of a common regulatory pathway also shared by L-kynurenine exposure. We demonstrate that Tumor necrosis factor receptor-associated factor (TRAF)6 – member of a family of adapter molecules that couple the TNF receptor and interleukin-1 receptor/Toll-like receptor families to intracellular signaling events essential for the development of immune responses – is targeted by both lipoxins and L-kynurenine via an AhR/SOCS2-dependent pathway. Furthermore, we show that LXA4- and L-kynurenine-induced AhR activation, its subsequent nuclear translocation, leading SOCS2 expression and TRAF6 Lys47-linked poly-ubiquitination and proteosome-mediated degradation of the adapter proteins. The in vitro consequences of such molecular interactions included inhibition of TLR- and cytokine receptor-driven signal transduction and cytokine production. Subsequently, in vivo proteosome inhibition led to unresponsiveness to lipoxins, as well as to uncontrolled pro-inflammatory reactions and elevated mortality during toxoplasmosis. In summary, our results establish proteasome degradation of TRAF6 as a key molecular target for the anti-inflammatory pathway triggered by lipoxins and L-kynurenine, critical counter-regulatory mediators in the innate and adaptive immune systems

    Effect of venlafaxine on bone loss associated with ligature-induced periodontitis in Wistar rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study investigated the effects of venlafaxine, an antidepressant drug with immunoregulatory properties on the inflammatory response and bone loss associated with experimental periodontal disease (EPD).</p> <p>Materials and Methods</p> <p>Wistar rats were subjected to a ligature placement around the second upper left molar. The treated groups received orally venlafaxine (10 or 50 mg/kg) one hour before the experimental periodontal disease induction and daily for 10 days. Vehicle-treated experimental periodontal disease and a sham-operated (SO) controls were included. Bone loss was analyzed morphometrically and histopathological analysis was based on cell influx, alveolar bone, and cementum integrity. Lipid peroxidation quantification and immunohistochemistry to TNF-α and iNOS were performed.</p> <p>Results</p> <p>Experimental periodontal disease rats showed an intense bone loss compared to SO ones (SO = 1.61 ± 1.36; EPD = 4.47 ± 1.98 mm, p < 0.001) and evidenced increased cellular infiltration and immunoreactivity for TNF-α and iNOS. Venlafaxine treatment while at low dose (10 mg/kg) afforded no significant protection against bone loss (3.25 ± 1.26 mm), a high dose (50 mg/kg) caused significantly enhanced bone loss (6.81 ± 3.31 mm, p < 0.05). Venlafaxine effectively decreased the lipid peroxidation but showed no significant change in TNF-α or iNOS immunoreactivity.</p> <p>Conclusion</p> <p>The increased bone loss associated with high dose venlafaxine may possibly be a result of synaptic inhibition of serotonin uptake.</p

    Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines

    Get PDF
    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions

    (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    Get PDF
    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts

    Speaker- versus listener-oriented disfluency: A re-examination of arguments and assumptions from autism spectrum disorder

    Get PDF
    We re-evaluate conclusions about disfluency production in high-functioning forms of autism spectrum disorder (HFA). Previous studies examined individuals with HFA to address a theoretical question regarding speaker- and listener-oriented disfluencies. Individuals with HFA tend to be self-centric and have poor pragmatic language skills, and should be less likely to produce listener-oriented disfluency. However, previous studies did not account for individual differences variables that affect disfluency. We show that both matched and unmatched controls produce fewer repairs than individuals with HFA. For silent pauses, there was no difference between matched controls and HFA, but both groups produced more than unmatched controls. These results identify limitations in prior research and shed light on the relationship between autism spectrum disorders and disfluent speech

    Evaluating the Number of Stages in Development of Squamous Cell and Adenocarcinomas across Cancer Sites Using Human Population-Based Cancer Modeling

    Get PDF
    BACKGROUND: Adenocarcinomas (ACs) and squamous cell carcinomas (SCCs) differ by clinical and molecular characteristics. We evaluated the characteristics of carcinogenesis by modeling the age patterns of incidence rates of ACs and SCCs of various organs to test whether these characteristics differed between cancer subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Histotype-specific incidence rates of 14 ACs and 12 SCCs from the SEER Registry (1973-2003) were analyzed by fitting several biologically motivated models to observed age patterns. A frailty model with the Weibull baseline was applied to each age pattern to provide the best fit for the majority of cancers. For each cancer, model parameters describing the underlying mechanisms of carcinogenesis including the number of stages occurring during an individual's life and leading to cancer (m-stages) were estimated. For sensitivity analysis, the age-period-cohort model was incorporated into the carcinogenesis model to test the stability of the estimates. For the majority of studied cancers, the numbers of m-stages were similar within each group (i.e., AC and SCC). When cancers of the same organs were compared (i.e., lung, esophagus, and cervix uteri), the number of m-stages were more strongly associated with the AC/SCC subtype than with the organ: 9.79±0.09, 9.93±0.19 and 8.80±0.10 for lung, esophagus, and cervical ACs, compared to 11.41±0.10, 12.86±0.34 and 12.01±0.51 for SCCs of the respective organs (p<0.05 between subtypes). Most SCCs had more than ten m-stages while ACs had fewer than ten m-stages. The sensitivity analyses of the model parameters demonstrated the stability of the obtained estimates. CONCLUSIONS/SIGNIFICANCE: A model containing parameters capable of representing the number of stages of cancer development occurring during individual's life was applied to the large population data on incidence of ACs and SCCs. The model revealed that the number of m-stages differed by cancer subtype being more strongly associated with ACs/SCCs histotype than with organ/site
    • …
    corecore