235 research outputs found
Effect of valdecoxib pretreatment on pain and secondary hyperalgesia: a randomized controlled trial in healthy volunteers [ISRCTN05282752, NCT00260325]
BACKGROUND: Induction of the COX-2 isoenzyme appears to play a major role in the genesis of central sensitization after nociceptive stimulation. This study aimed to investigate the efficacy of a single, oral dose of the specific COX-2 inhibitor-valdecoxib in attenuating the central sensitization – induced secondary hyperalgesia in a heat/capsaicin pain model in healthy volunteers. METHODS: The study was a randomized, double blind, placebo controlled, crossover, single dose efficacy trial using 20 healthy volunteers. Two hours following placebo or 40 mg, PO valdecoxib, participants underwent skin sensitization with heat/capsaicin, as well as supra-threshold pain and re-kindling measurements according to an established, validated pain model. Subjects rated pain intensity and unpleasantness on a visual analog scale and the area of secondary hyperalgesia was serially mapped. RESULTS: The area of secondary hyperalgesia produced after 40 mg of valdecoxib was no different than that after placebo. Furthermore, there were no significantly relevant differences when volunteers were treated with valdecoxib or placebo in relation to either cold- or hot pain threshold or the intensity of pain after supra-threshold, thermal pain stimulation. CONCLUSION: We demonstrated that a single, oral dose of valdecoxib when does not attenuate secondary hyperalgesia induced by heat/capsaicin in a cutaneous sensitization pain model in healthy volunteers
Comparative study of the stability of bimatoprost 0.03% and latanoprost 0.005%: A patient-use study
<p>Abstract</p> <p>Background</p> <p>The stability of ophthalmic preparations in multidose containers is influenced by the preservative as well as the stability of the active ingredient. Unstable drugs may require refrigeration to preserve their active ingredient level and they are more likely to degrade over time, therefore becoming more susceptible to degradation based on patient mishandling. The purpose of this study was to determine the degree of molecular degradation that occurs in bimatoprost and latanoprost in a patient-use setting.</p> <p>Methods</p> <p>This was an open-label, laboratory evaluation of the relative stability of bimatoprost and latanoprost. Patients presently using bimatoprost (n = 31) or latanoprost (n = 34) were identified at 2 clinical sites in Brazil. Patients were instructed to use and store their drops as usual and return all used medication bottles between day 28 and day 34 after opening.</p> <p>Results</p> <p>Bimatoprost demonstrated no degradation, but latanoprost degraded at various levels. The mean age of bimatoprost was 43.0 ± 3.4 days and the mean age of latanoprost was 43.9 ± 2.8 days (P = .072). The mean percentage of labeled concentration was 103.7% in the bimatoprost bottles and 88.1% in the latanoprost bottles (P < 001).</p> <p>Conclusion</p> <p>This study showed that bimatoprost maintained ≥100% concentration throughout the study period while latanoprost did not.</p
An emergency clinical pathway for stroke patients – results of a cluster randomised trial (isrctn41456865)
BACKGROUND: Emergency Clinical Pathways (ECP) for stroke have never been tested in randomized controlled trials (RCTs). OBJECTIVE: To evaluate the effectiveness of an ECP for stroke patients in Latium (Italy) emergency system. METHODS: cluster-RCT designed to compare stroke patient referrals by Emergency Medical Service (EMS) and Emergency Room (ER) health professionals trained in the ECP, with those of non-trained EMS and ER controls. Primary outcome measure was the proportion of eligible (aged /= 80 and symptom onset /= 6 hours) stroke patients referred to a stroke unit (SU). Intention to treat (ITT) and per-protocol (PP) analyses were performed, and risk ratios (RR) adjusted by age, gender and area, were calculated. RESULTS: 2656 patients in the intervention arm and 2239 in the control arm required assistance; 78.3% of the former and 80.6% of the latter were admitted to hospitals, and respectively 74.8% and 78.3% were confirmed strokes. Of the eligible confirmed strokes, 106/434 (24.4%) in the intervention arm and 43/328 (13.1%) in the control arm were referred to the SU in the ITT analysis (RR = 2.01; 95% CI: 0.79-4.00), and respectively 105/243 (43.2%) and 43/311 (13.8%) in the PP analysis (RR = 3.21; 95%CI: 1.62-4.98). Of patients suitable for i.v. thrombolysis, 15/175 (8.6%) in the intervention arm and 2/115 (1.7%) in the control arm received thrombolysis (p = 0.02) in the ITT analysis, and respectively 15/99 (15.1%) and 2/107 (1.9%)(p = 0.001) in the PP analysis. CONCLUSION: Our data suggest potenti efficiency and feasibility of an ECP. The integration of EMS and ERs with SU networks for organised acute stroke care is feasible and may ameliorate the quality of care for stroke patients. TRIAL REGISTRATION: Current Controlled Trials (ISRCTN41456865)
Should digestion assays be used to estimate persistence of potential allergens in tests for safety of novel food proteins?
Food allergies affect an estimated 3 to 4% of adults and up to 8% of children in developed western countries. Results from in vitro simulated gastric digestion studies with purified proteins are routinely used to assess the allergenic potential of novel food proteins. The digestion of purified proteins in simulated gastric fluid typically progresses in an exponential fashion allowing persistence to be quantified using pseudo-first-order rate constants or half lives. However, the persistence of purified proteins in simulated gastric fluid is a poor predictor of the allergenic status of food proteins, potentially due to food matrix effects that can be significant in vivo. The evaluation of the persistence of novel proteins in whole, prepared food exposed to simulated gastric fluid may provide a more correlative result, but such assays should be thoroughly validated to demonstrate a predictive capacity before they are accepted to predict the allergenic potential of novel food proteins
Evaluating the Effects of Cutoffs and Treatment of Long-range Electrostatics in Protein Folding Simulations
The use of molecular dynamics simulations to provide atomic-level descriptions of biological processes tends to be computationally demanding, and a number of approximations are thus commonly employed to improve computational efficiency. In the past, the effect of these approximations on macromolecular structure and stability has been evaluated mostly through quantitative studies of small-molecule systems or qualitative observations of short-timescale simulations of biological macromolecules. Here we present a quantitative evaluation of two commonly employed approximations, using a test system that has been the subject of a number of previous protein folding studies–the villin headpiece. In particular, we examined the effect of (i) the use of a cutoff-based force-shifting technique rather than an Ewald summation for the treatment of electrostatic interactions, and (ii) the length of the cutoff used to determine how many pairwise interactions are included in the calculation of both electrostatic and van der Waals forces. Our results show that the free energy of folding is relatively insensitive to the choice of cutoff beyond 9 Å, and to whether an Ewald method is used to account for long-range electrostatic interactions. In contrast, we find that the structural properties of the unfolded state depend more strongly on the two approximations examined here
CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity
Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4Â years old; a majority arose in the cerebrum but 24Â % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-014-1291-1) contains supplementary material, which is available to authorized users
A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor
© 2019 Elsevier Inc. Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death. Sin-Chan et al. uncover a C19MC-LIN28A-MYCN super-enhancer-dependent oncogenic circuit in embryonal tumors with multilayered rosettes (ETMRs). The circuit entraps an early neural lineage network to sustain embryonic epigenetic programming and is vulnerable to bromodomain inhibition, which promotes ETMR cell death
Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells
Pediatric ependymomas are highly recurrent tumors resistant to conventional chemotherapy. Telomerase, a ribonucleoprotein critical in permitting limitless replication, has been found to be critically important for the maintenance of tumor-initiating cells (TICs). These TICs are chemoresistant, repopulate the tumor from which they are identified, and are drivers of recurrence in numerous cancers. In this study, telomerase enzymatic activity was directly measured and inhibited to assess the therapeutic potential of targeting telomerase. Telomerase repeat amplification protocol (TRAP) (n = 36) and C-circle assay/telomere FISH/ATRX staining (n = 76) were performed on primary ependymomas to determine the prevalence and prognostic potential of telomerase activity or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms, respectively. Imetelstat, a phase 2 telomerase inhibitor, was used to elucidate the effect of telomerase inhibition on proliferation and tumorigenicity in established cell lines (BXD-1425EPN, R254), a primary TIC line (E520) and xenograft models of pediatric ependymoma. Over 60 % of pediatric ependymomas were found to rely on telomerase activity to maintain telomeres, while no ependymomas showed evidence of ALT. Children with telomerase-active tumors had reduced 5-year progression-free survival (29 +/- A 11 vs 64 +/- A 18 %; p = 0.03) and overall survival (58 +/- A 12 vs 83 +/- A 15 %; p = 0.05) rates compared to those with tumors lacking telomerase activity. Imetelstat inhibited proliferation and self-renewal by shortening telomeres and inducing senescence in vitro. In vivo, Imetelstat significantly reduced subcutaneous xenograft growth by 40 % (p = 0.03) and completely abolished the tumorigenicity of pediatric ependymoma TICs in an orthotopic xenograft model. Telomerase inhibition represents a promising therapeutic approach for telomerase-active pediatric ependymomas found to characterize high-risk ependymomas.Canadian Institutes of Health Research [MOP 82727]info:eu-repo/semantics/publishedVersio
- …