204 research outputs found

    NT1-Tau Is Increased in CSF and Plasma of CJD Patients, and Correlates with Disease Progression

    Get PDF
    This study investigates the diagnostic and prognostic potential of different forms of tau in biofluids from patients with Creutzfeldt-Jakob disease (CJD). Extracellular tau, which is molecularly heterogeneous, was measured using ultra-sensitive custom-made Simoa assays for N-terminal (NT1), mid-region, and full-length tau. We assessed cross-sectional CSF and plasma from healthy controls, patients with Alzheimer’s disease (AD) and CJD patients. Then, we evaluated the correlation of the best-performing tau assay (NT1-tau) with clinical severity and functional decline (using the MRC Prion Disease Rating Scale) in a longitudinal CJD cohort (n = 145). In a cross-sectional study, tau measured in CSF with the NT1 and mid-region Simoa assays, separated CJD (n = 15) from AD (n = 18) and controls (n = 21) with a diagnostic accuracy (AUCs: 0.98–1.00) comparable to or better than neurofilament light chain (NfL; AUCs: 0.96–0.99). In plasma, NT1-measured tau was elevated in CJD (n = 5) versus AD (n = 15) and controls (n = 15). Moreover, in CJD plasma (n = 145) NT1-tau levels correlated with stage and rate of disease progression, and the effect on clinical progression was modified by the PRNP codon 129. Our findings suggest that plasma NT1-tau shows promise as a minimally invasive diagnostic and prognostic biomarker of CJD, and should be further investigated for its potential to monitor disease progression and response to therapies

    Isolation of Proteinase K-Sensitive Prions Using Pronase E and Phosphotungstic Acid

    Get PDF
    Disease-related prion protein, PrPSc, is classically distinguished from its normal cellular precursor, PrPC, by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrPSc using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prion infectivity may be destroyed by this treatment. Here we report that digestion of RML prion-infected mouse brain with pronase E, followed by precipitation with sodium phosphotungstic acid, eliminates the large majority of brain proteins, including PrPC, while preserving >70% of infectious prion titre. This procedure now allows characterization of proteinase K-sensitive prions and investigation of their clinical relevance in human and animal prion disease without being confounded by contaminating PrPC

    Isolation of two distinct prion strains from a scrapie-affected sheep

    Get PDF
    We performed a transmission study using mice to clarify the characteristics of the most recent case of scrapie in Japan. The mice that were inoculated with the brain homogenate from a scrapie-affected sheep developed progressive neurological disease, and one of the scrapie-affected mice showed unique clinical signs during primary transmission. This mouse developed obesity, polydipsia, and polyuria. In contrast, the other affected mice exhibited weight loss and hypokinesia. In subsequent passages, the mice showed distinct characteristic scrapie phenotypes. This finding may prove that different prion strains coexist in a naturally affected sheep with scrapie

    De Novo Generation of Infectious Prions In Vitro Produces a New Disease Phenotype

    Get PDF
    Prions are the proteinaceous infectious agents responsible for Transmissible Spongiform Encephalopathies. Compelling evidence supports the hypothesis that prions are composed exclusively of a misfolded version of the prion protein (PrPSc) that replicates in the body in the absence of nucleic acids by inducing the misfolding of the cellular prion protein (PrPC). The most common form of human prion disease is sporadic, which appears to have its origin in a low frequency event of spontaneous misfolding to generate the first PrPSc particle that then propagates as in the infectious form of the disease. The main goal of this study was to mimic an early event in the etiology of sporadic disease by attempting de novo generation of infectious PrPSc in vitro. For this purpose we analyzed in detail the possibility of spontaneous generation of PrPSc by the protein misfolding cyclic amplification (PMCA) procedure. Under standard PMCA conditions, and taking precautions to avoid cross-contamination, de novo generation of PrPSc was never observed, supporting the use of the technology for diagnostic applications. However, we report that PMCA can be modified to generate PrPSc in the absence of pre-existing PrPSc in different animal species at a low and variable rate. De novo generated PrPSc was infectious when inoculated into wild type hamsters, producing a new disease phenotype with unique clinical, neuropathological and biochemical features. Our results represent additional evidence in support of the prion hypothesis and provide a simple model to study the mechanism of sporadic prion disease. The findings also suggest that prion diversity is not restricted to those currently known, and that likely new forms of infectious protein foldings may be produced, resulting in novel disease phenotypes

    Transmission characteristics of heterozygous cases of Creutzfeldt-Jakob disease with variable abnormal prion protein allotypes

    Get PDF
    In the human prion disease Creutzfeldt-Jakob disease (CJD), different CJD neuropathological subtypes are defined by the presence in normal prion protein (PrPC) of a methionine or valine at residue 129, by the molecular mass of the infectious prion protein PrPSc, by the pattern of PrPSc deposition, and by the distribution of spongiform change in the brain. Heterozygous cases of CJD potentially add another layer of complexity to defining CJD subtypes since PrPSc can have either a methionine (PrPSc-M129) or valine (PrPSc-V129) at residue 129. We have recently demonstrated that the relative amount of PrPSc-M129 versus PrPSc-V129, i.e. the PrPSc allotype ratio, varies between heterozygous CJD cases. In order to determine if differences in PrPSc allotype correlated with different disease phenotypes, we have inoculated 10 cases of heterozygous CJD (7 sporadic and 3 iatrogenic) into two transgenic mouse lines overexpressing PrPC with a methionine at codon 129. In one case, brain-region specific differences in PrPSc allotype appeared to correlate with differences in prion disease transmission and phenotype. In the other 9 cases inoculated, the presence of PrPSc-V129 was associated with plaque formation but differences in PrPSc allotype did not consistently correlate with disease incubation time or neuropathology. Thus, while the PrPSc allotype ratio may contribute to diverse prion phenotypes within a single brain, it does not appear to be a primary determinative factor of disease phenotype

    The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent

    Get PDF
    Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics

    UK Iatrogenic Creutzfeldt-Jakob disease:Investigating human prion transmission across genotypic barriers using human tissue-based and molecular approaches

    Get PDF
    Creutzfeldt-Jakob disease (CJD) is the prototypic human prion disease that occurs most commonly in sporadic and genetic forms, but it is also transmissible and can be acquired through medical procedures, resulting in iatrogenic CJD (iCJD). The largest numbers of iCJD cases that have occurred worldwide have resulted from contaminated cadaveric pituitary-derived human growth hormone (hGH) and its use to treat primary and secondary growth hormone deficiency. We report a comprehensive, tissue-based and molecular genetic analysis of the largest series of UK hGH-iCJD cases reported to date, including in vitro kinetic molecular modelling of genotypic factors influencing prion transmission. The results show the interplay of prion strain and host genotype in governing the molecular, pathological and temporal characteristics of the UK hGH-iCJD epidemic and provide insights into the adaptive mechanisms involved when prions cross genotypic barriers. We conclude that all of the available evidence is consistent with the hypothesis that the UK hGH-iCJD epidemic resulted from transmission of the V2 human prion strain, which is associated with the second most common form of sporadic CJD

    Regulating Factors of PrPres Glycosylation in Creutzfeldt-Jakob Disease - Implications for the Dissemination and the Diagnosis of Human Prion Strains

    Get PDF
    OBJECTIVE: The glycoprofile of pathological prion protein (PrP(res)) is widely used as a diagnosis marker in Creutzfeldt-Jakob disease (CJD) and is thought to vary in a strain-specific manner. However, that the same glycoprofile of PrP(res) always accumulates in the whole brain of one individual has been questioned. We aimed to determine whether and how PrP(res) glycosylation is regulated in the brain of patients with sporadic and variant Creutzfeldt-Jakob disease. METHODS: PrP(res) glycoprofiles in four brain regions from 134 patients with sporadic or variant CJD were analyzed as a function of the genotype at codon 129 of PRNP and the Western blot type of PrP(res). RESULTS: The regional distribution of PrP(res) glycoforms within one individual was heterogeneous in sporadic but not in variant CJD. PrP(res) glycoforms ratio significantly correlated with the genotype at codon 129 of the prion protein gene and the Western blot type of PrP(res) in a region-specific manner. In some cases of sCJD, the glycoprofile of thalamic PrP(res) was undistinguishable from that observed in variant CJD. INTERPRETATION: Regulations leading to variations of PrP(res) pattern between brain regions in sCJD patients, involving host genotype and Western blot type of PrP(res) may contribute to the specific brain targeting of prion strains and have direct implications for the diagnosis of the different forms of CJD

    Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    Get PDF
    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance

    Defining the Conformational Features of Anchorless, Poorly Neuroinvasive Prions

    Get PDF
    Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion
    • …
    corecore