41 research outputs found

    Effect of terminal accuracy requirements on temporal gaze-hand coordination during fast discrete and reciprocal pointings

    Get PDF
    Background\ud \ud Rapid discrete goal-directed movements are characterized by a well known coordination pattern between the gaze and the hand displacements. The gaze always starts prior to the hand movement and reaches the target before hand velocity peak. Surprisingly, the effect of the target size on the temporal gaze-hand coordination has not been directly investigated. Moreover, goal-directed movements are often produced in a reciprocal rather than in a discrete manner. The objectives of this work were to assess the effect of the target size on temporal gaze-hand coordination during fast 1) discrete and 2) reciprocal pointings.\ud \ud Methods\ud \ud Subjects performed fast discrete (experiment 1) and reciprocal (experiment 2) pointings with an amplitude of 50 cm and four target diameters (7.6, 3.8, 1.9 and 0.95 cm) leading to indexes of difficulty (ID = log2[2A/D]) of 3.7, 4.7, 5.7 and 6.7 bits. Gaze and hand displacements were synchronously recorded. Temporal gaze-hand coordination parameters were compared between experiments (discrete and reciprocal pointings) and IDs using analyses of variance (ANOVAs).\ud \ud Results\ud \ud Data showed that the magnitude of the gaze-hand lead pattern was much higher for discrete than for reciprocal pointings. Moreover, while it was constant for discrete pointings, it decreased systematically with an increasing ID for reciprocal pointings because of the longer duration of gaze anchoring on target.\ud \ud Conclusion \ud \ud Overall, the temporal gaze-hand coordination analysis revealed that even for high IDs, fast reciprocal pointings could not be considered as a concatenation of discrete units. Moreover, our data clearly illustrate the smooth adaptation of temporal gaze-hand coordination to terminal accuracy requirements during fast reciprocal pointings. It will be interesting for further researches to investigate if the methodology used in the experiment 2 allows assessing the effect of sensori-motor deficits on gaze-hand coordination

    Validity of Thermal Ramping Assays Used to Assess Thermal Tolerance in Arthropods

    Get PDF
    Proper assessment of environmental resistance of animals is critical for the ability of researchers to understand how variation in environmental conditions influence population and species abundance. This is also the case for studies of upper thermal limits in insects, where researchers studying animals under laboratory conditions must select appropriate methodology on which conclusions can be drawn. Ideally these methods should precisely estimate the trait of interest and also be biological meaningful. In an attempt to develop such tests it has been proposed that thermal ramping assays are useful assays for small insects because they incorporate an ecologically relevant gradual temperature change. However, recent model-based papers have suggested that estimates of thermal resistance may be strongly confounded by simultaneous starvation and dehydration stress. In the present study we empirically test these model predictions using two sets of independent experiments. We clearly demonstrate that results from ramping assays of small insects (Drosophila melanogaster) are not compromised by starvation- or dehydration-stress. Firstly we show that the mild disturbance of water and energy balance of D. melanogaster experienced during the ramping tests does not confound heat tolerance estimates. Secondly we show that flies pre-exposed to starvation and dehydration have “normal” heat tolerance and that resistance to heat stress is independent of the energetic and water status of the flies. On the basis of our results we discuss the assumptions used in recent model papers and present arguments as to why the ramping assay is both a valid and ecologically relevant way to measure thermal resistance in insects

    Electrodeposition and characterisation of CdS thin films using thiourea precursor for application in solar cells

    Get PDF
    CdS thin films have been successfully electrodeposited on glass/FTO substrates using acidic and aqueous solution of CdCl2.xH2O and thiourea (SC(NH2)2). The electrodeposition of CdS thin films were carried out potentiostatically using a 2-electrode system. The prepared films were characterised using X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), Atomic force microscopy (AFM), Photoelectrochemical (PEC) cell measurements, Electrical resistivity measurements and UV-Vis spectrophotometry to study their structural, compositional, morphological, electrical and optical properties, respectively. The structural studies show that the as-deposited and annealed CdS layers are polycrystalline with hexagonal crystal structure and preferentially oriented along (200) planes. The optical studies indicate that the ED-CdS layers have direct bandgaps in the range (2.53-2.58) eV for the as-deposited and (2.42-2.48) eV after annealing at 400oC for 20 minutes in air. The morphological studies show the good coverage of the FTO surface by the CdS grains. The average grain sizes for the as-deposited and annealed layers were in the range (60-225) nm. These grains or clusters are made out of smaller nano crystallites with the sizes in the range ~(11-33) nm. The electrical resistivity shows reduction as thickness increases. The resistivity values for the as-deposited and annealed layers were in the range (0.82-4.92)×105 Ωcm. The optimum growth voltage for the CdS thin films was found to be at the cathodic potential of 797 mV with respect to the graphite anode. No visible precipitations of elemental S or CdS particles were observed in the deposition electrolyte showing a stable bath using thiourea during the growth

    Differential Impact of Tumor Suppressor Pathways on DNA Damage Response and Therapy-Induced Transformation in a Mouse Primary Cell Model

    Get PDF
    The RB and p53 tumor suppressors are mediators of DNA damage response, and compound inactivation of RB and p53 is a common occurrence in human cancers. Surprisingly, their cooperation in DNA damage signaling in relation to tumorigenesis and therapeutic response remains enigmatic. In the context of individuals with heritable retinoblastoma, there is a predilection for secondary tumor development, which has been associated with the use of radiation-therapy to treat the primary tumor. Furthermore, while germline mutations of the p53 gene are critical drivers for cancer predisposition syndromes, it is postulated that extrinsic stresses play a major role in promoting varying tumor spectrums and disease severities. In light of these studies, we examined the tumor suppressor functions of these proteins when challenged by exposure to therapeutic stress. To examine the cooperation of RB and p53 in tumorigenesis, and in response to therapy-induced DNA damage, a combination of genetic deletion and dominant negative strategies was employed. Results indicate that loss/inactivation of RB and p53 is not sufficient for cellular transformation. However, these proteins played distinct roles in response to therapy-induced DNA damage and subsequent tumorigenesis. Specifically, RB status was critical for cellular response to damage and senescence, irrespective of p53 function. Loss of RB resulted in a dramatic evolution of gene expression as a result of alterations in epigenetic programming. Critically, the observed changes in gene expression have been specifically associated with tumorigenesis, and RB-deficient, recurred cells displayed oncogenic characteristics, as well as increased resistance to subsequent challenge with discrete therapeutic agents. Taken together, these findings indicate that tumor suppressor functions of RB and p53 are particularly manifest when challenged by cellular stress. In the face of such challenge, RB is a critical suppressor of tumorigenesis beyond p53, and RB-deficiency could promote significant cellular evolution, ultimately contributing to a more aggressive disease

    Influence of socio-economic status on habitual physical activity and sedentary behavior in 8- to 11-year old children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While socio-economic status has been shown to be an important determinant of health and physical activity in adults, results for children and adolescents are less consistent. The purpose of this study, therefore, is to examine whether physical activity and sedentary behavior differs in children by socio-economic status (SES) independent of body mass index.</p> <p>Methods</p> <p>Data were from two cohorts including 271 children (117 males; 154 females) in study 1 and 131 children in study 2 (63 males; 68 females). The average age was 9.6 and 8.8 years respectively. Height and body mass were assessed according to standard procedures and body mass index (BMI, kg/m<sup>2</sup>) was calculated. Parent-reported household income was used to determine SES. Habitual, free-living physical activity (PA) was assessed by a pedometer (steps/day) in study 1 and accelerometer (time spent in moderate-to-vigorous PA) in study 2. Self-reported time spent watching TV and on the computer was used as measure of sedentary behavior. Differences in PA and sedentary behavior by SES were initially tested using ANOVA. Further analyses used ANCOVA controlling for BMI, as well as leg length in the pedometer cohort.</p> <p>Results</p> <p>In study 1, mean daily steps differed significantly among SES groups with lower SES groups approximating 10,500 steps/day compared to about 12,000 steps/day in the higher SES groups. These differences remained significant (p < 0.05) when controlling for leg length. Lower SES children, however, had higher body mass and BMI compared to higher SES groups (p < 0.05) and PA no longer remained significant when further controlling for BMI. In study 2 results depended on the methodology used to determine time spent in moderate-to-vigorous physical activity (MVPA). Only one equation resulted in significant group differences (p = 0.015), and these differences remained after controlling for BMI. Significant differences between SES groups were shown for sedentary behavior in both cohorts (P < 0.05) with higher SES groups spending less time watching TV than low SES groups.</p> <p>Conclusions</p> <p>Children from a low SES show a trend of lower PA levels and spend more time in sedentary behavior than high SES children; however, differences in PA were influenced by BMI. The higher BMI in these children might be another factor contributing to increased health risks among low SES children compared to children from with a higher SES.</p

    Outcome Measures in Clinical Trials for Multiple Sclerosis

    Get PDF

    The role of controlled nucleation in the growth of CdS thin films on ITO/glass for solar cells

    No full text
    The MOCVD growth of cadmium sulphide from dimethyl cadmium and ditertiarybutyl sulphide on indium tin oxide (ITO) coated glass is optimized in this work. Optimum transmission characteristics and grain size are observed for films grown at 290 degrees C at VI/II ratios of 1-1.5. This was related to the identification of a nucleation delay during in situ growth monitoring via laser interferometry. The nucleation delay is noted to vary with temperature and also VI/II ratio, allowing the rationalization of the resulting film quality in terms of this observation. Structural analysis indicates polycrystalline CdS of hexagonal phase of (1 0 0) preferred orientation. (C) 1998 Kluwer Academic Publishers.</p

    High efficiency for As-doped cells

    No full text
    corecore