1,458 research outputs found

    Electronic Correlations Near a Peierls-CDW Transition

    Full text link
    Results of a phenomenological Monte carlo calculation for a 2D electron-phonon Holstein model near a Peierls-CDW transition are presented. Here the zero Matsubara frequency part of the phonon action is dominant and we approximated it by a phenomenological form that as an Ising-like Peierls-CDW transition. The resulting model is studied on a 32 by 32 lattice. The single particle spectral weight A(k,\omega), the density of states N(\omega), and the real part of the conductivity \sigma_1(\omega) all show evidence of a pseudogap which develops in the low-energy electronic degrees of freedom as the Peierls-CDW transition is approachedComment: 14 pages, 7 figure

    On the existence of a Bose Metal at T=0

    Full text link
    This paper aims to justify, at a microscopic level, the existence of a two-dimensional Bose metal, i.e. a metallic phase made out of Cooper pairs at T=0. To this end, we consider the physics of quantum phase fluctuations in (granular) superconductors in the absence of disorder and emphasise the role of two order parameters in the problem, viz. phase order and charge order. We focus on the 2-d Bose Hubbard model in the limit of very large fillings, i.e. a 2-d array of Josephson junctions. We find that the algebra of phase fluctuations is that of the Euclidean group E2E_{2} in this limit, and show that the model is equivalent to two coupled XY models in (2+1)-d, one corresponding to the phase degrees of freedom, and the other the charge degrees of freedom. The Bose metal, then, is the phase in which both these degrees of freedom are disordered(as a result of quantum frustration). We analyse the model in terms of its topological excitations and suggest that there is a strong indication that this state represents a surface of critical points, akin to the gapless spin liquid states. We find a remarkable consistency of this scenario with certain low-T_c thin film experiments.Comment: 16 pages, 2 figure

    Ab initio many-body calculations on infinite carbon and boron-nitrogen chains

    Full text link
    In this paper we report first-principles calculations on the ground-state electronic structure of two infinite one-dimensional systems: (a) a chain of carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield results were obtained using the restricted Hartree-Fock approach, while the many-body effects were taken into account by second-order M{\o}ller-Plesset perturbation theory and the coupled-cluster approach. The calculations were performed using 6-31GG^{**} basis sets, including the d-type polarization functions. Both at the Hartree-Fock (HF) and the correlated levels we find that the infinite carbon chain exhibits bond alternation with alternating single and triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In addition, we also performed density-functional-theory-based local density approximation (LDA) calculations on the infinite carbon chain using the same basis set. Our LDA results, in contradiction to our HF and correlated results, predict a very small bond alternation. Based upon our LDA results for the carbon chain, which are in agreement with an earlier LDA calculation calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488 (1998).], we conclude that the LDA significantly underestimates Peierls distortion. This emphasizes that the inclusion of many-particle effects is very important for the correct description of Peierls distortion in one-dimensional systems.Comment: 3 figures (included). To appear in Phys. Rev.

    Multi-gap superconductivity in a BaFe1.84Co0.16As2 film from optical measurements at terahertz frequencies

    Full text link
    We measured the THz reflectance properties of a high quality epitaxial thin film of the Fe-based superconductor BaFe1.84_{1.84}Co0.16_{0.16}As2_2 with Tc_c=22.5 K. The film was grown by pulsed laser deposition on a DyScO3_3 substrate with an epitaxial SrTiO3_3 intermediate layer. The measured RS/RNR_S/R_N spectrum, i.e. the reflectivity ratio between the superconducting and normal state reflectance, provides clear evidence of a superconducting gap ΔA\Delta_A close to 15 cm1^{-1}. A detailed data analysis shows that a two-band, two-gap model is absolutely necessary to obtain a good description of the measured RS/RNR_S/R_N spectrum. The low-energy ΔA\Delta_A gap results to be well determined (ΔA\Delta_A=15.5±\pm0.5 cm1^{-1}), while the value of the high-energy gap ΔB\Delta_B is more uncertain (ΔB\Delta_B=55±\pm7 cm1^{-1}). Our results provide evidence of a nodeless isotropic double-gap scenario, with the presence of two optical gaps corresponding to 2Δ/kTc\Delta/kT_c values close to 2 and 7.Comment: Published Versio

    Spousal Cognitive Status and Risk for Declining Cognitive Function and Dementia: The Atherosclerosis Risk in Communities Study

    Get PDF
    Objectives: We investigated the relationship between the cognitive status of participants’ spouses and participants’ own cognitive outcomes, controlling for mid-life factors. Methods: Participants (n = 1845; baseline age 66–90 years) from the prospective Atherosclerosis Risk in Communities Study were followed from 2011 to 2019. We used linear regression and Cox proportional hazard models to estimate whether spouses of people with MCI/dementia had lower cognitive functioning and elevated risk of incident dementia. Results: Having a spouse with MCI/dementia was associated with a deficit in cognitive function (b = −0.09 standard deviations; 95% CI = −0.18, 0.00). Adjustment for mid-life risk factors attenuated this association (b = −0.02 standard deviations; 95% CI = −0.10, 0.06). We observed no significant relationship between spousal MCI/dementia status and incident dementia (hazard ratio = 0.97; 95% CI = 0.69, 1.38). Discussion: Spousal cognitive status is not associated with poor cognitive outcomes independent of mid-life factors

    Symmetry breaking in the Hubbard model at weak coupling

    Full text link
    The phase diagram of the Hubbard model is studied at weak coupling in two and three spatial dimensions. It is shown that the Neel temperature and the order parameter in d=3 are smaller than the Hartree-Fock predictions by a factor of q=0.2599. For d=2 we show that the self-consistent (sc) perturbation series bears no relevance to the behavior of the exact solution of the Hubbard model in the symmetry-broken phase. We also investigate an anisotropic model and show that the coupling between planes is essential for the validity of mean-field-type order parameters

    Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium

    Full text link
    Studies on the isospin of fragments resulting from the disassembly of highly excited large thermal-like nuclear emitting sources, formed in the ^{197}Au + ^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different decay systems (the quasiprojectile formed in midperipheral reactions and the unique source coming from the incomplete fusion of projectile and target in the most central collisions) were considered; these emitting sources have the same initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but different size. Their charge yields and isotopic content of the fragments show different distributions. It is observed that the neutron content of intermediate mass fragments increases with the size of the source. These evidences are consistent with chemical equilibrium reached in the systems. This fact is confirmed by the analysis with the statistical multifragmentation model.Comment: 9 pages, 4 ps figure

    Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite

    Get PDF
    The inelastic electron tunneling spectrum (IETS)of highly oriented pyrolitic graphite (HOPG) has been measured with scanning tunneling spectroscopy (STS) at 6K. The observed spectral features are in very good agreement with the vibrational density of states (vDOS) of graphite calculated from first principles. We discuss the enhancement of certain phonon modes by phonon-assisted tunneling in STS based on the restrictions imposed by the electronic structure of graphite. We also demonstrate for the first time the local excitation of surface-plasmons in IETS which are detected at an energy of 40 meV.Comment: PRB rapid communication, submitte

    The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram

    Full text link
    One central challenge in high-TcT_c superconductivity (SC) is to derive a detailed understanding for the specific role of the CuCu-dx2y2d_{x^2-y^2} and OO-px,yp_{x,y} orbital degrees of freedom. In most theoretical studies an effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics is that of doping into a Mott-insulator, whereas the actual high-TcT_c cuprates are doped charge-transfer insulators. To shed light on the related question, where the material-dependent physics enters, we compare the competing magnetic and superconducting phases in the ground state, the single- and two-particle excitations and, in particular, the pairing interaction and its dynamics in the three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e. the variational cluster approach (VCA), we find which frequencies are relevant for pairing in the two models as a function of interaction strength and doping: in the 3BH-models the interaction in the low- to optimal-doping regime is dominated by retarded pairing due to low-energy spin fluctuations with surprisingly little influence of inter-band (p-d charge) fluctuations. On the other hand, in the 1BH-model, in addition a part comes from "high-energy" excited states (Hubbard band), which may be identified with a non-retarded contribution. We find these differences between a charge-transfer and a Mott insulator to be renormalized away for the ground-state phase diagram of the 3BH- and 1BH-models, which are in close overall agreement, i.e. are "universal". On the other hand, we expect the differences - and thus, the material dependence to show up in the "non-universal" finite-T phase diagram (TcT_c-values).Comment: 17 pages, 9 figure
    corecore