1,239 research outputs found

    THE ISOTRON

    Get PDF
    Most methods of separating isotopes depend on the use of a large magnetic field. The isotron is an electromagnetic device for separating isotopes, but it effects the separation by the use of radiofrequency voltages instead of magnetic fields. It has the advantage that plane sources of large area can be used instead of the slit sources to which most magnetic methods are limited. Before entering into any discussion of the details, a simplified description of the principles of the method is given

    Coronal Fe XIV Emission During the Whole Heliosphere Interval Campaign

    Full text link
    Solar Cycle 24 is having a historically long and weak start. Observations of the Fe XIV corona from the Sacramento Peak site of the National Solar Observatory show an abnormal pattern of emission compared to observations of Cycles 21, 22, and 23 from the same instrument. The previous three cycles have shown a strong, rapid "Rush to the Poles" (previously observed in polar crown prominences and earlier coronal observations) in the parameter N(t,l,dt) (average number of Fe XIV emission features per day over dt days at time t and latitude l). Cycle 24 displays a weak, intermittent, and slow "Rush" that is apparent only in the northern hemisphere. If the northern Rush persists at its current rate, evidence from the Rushes in previous cycles indicates that solar maximum will occur in early 2013 or late 2012, at least in the northern hemisphere. At lower latitudes, solar maximum previously occurred when the time maximum of N(t,l,365) reached approximately 20{\deg} latitude. Currently, this parameter is at or below 30{\deg}and decreasing in latitude. Unfortunately, it is difficult at this time to calculate the rate of decrease in N(t,l,365). However, the southern hemisphere could reach 20{\deg} in 2011. Nonetheless, considering the levels of activity so far, there is a possibility that the maximum could be indiscernibleComment: 8 pages, 4 figures; Solar Physics Online First, 2011 http://www.springerlink.com/content/b5kl4040k0626647

    Critical temperature for the two-dimensional attractive Hubbard Model

    Get PDF
    The critical temperature for the attractive Hubbard model on a square lattice is determined from the analysis of two independent quantities, the helicity modulus, ρs\rho_s, and the pairing correlation function, PsP_s. These quantities have been calculated through Quantum Monte Carlo simulations for lattices up to 18×1818\times 18, and for several densities, in the intermediate-coupling regime. Imposing the universal-jump condition for an accurately calculated ρs\rho_s, together with thorough finite-size scaling analyses (in the spirit of the phenomenological renormalization group) of PsP_s, suggests that TcT_c is considerably higher than hitherto assumed.Comment: 5 pages, 6 figures. Accepted for publication in Phys. Rev.

    Foam Diagram Summation at Finite Temperature

    Get PDF
    We show that large-NN ϕ4\phi ^4 theory is not trivial if one accepts the presence of a tachyon with a truly huge mass, and that it allows exact calculation. We use it to illustrate how to calculate the exact resummed pressure at finite temperature and verify that it is infrared and ultraviolet finite even in the zero-mass case. In 3 dimensions a residual effect of the resummed infrared divergences is that at low temperature or strong coupling the leading term in the interaction pressure becomes independent of the coupling and is 4/5 of the free-field pressure. In 4 dimensions the pressure is well-defined provided that the temperature is below the tachyon mass. We examine how rapidly this expansion converges and use our analysis to suggest how one might reorganise perturbation theory to improve the calculation of the pressure for the QCD plasma.Comment: 18 pages plain tex, with 8 figures embedded with epsf. Equation (2.15) has been corrected and the consequent changes made to the figures. A further analytic result has been added to the 3-dimensional calculatio

    Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone

    Get PDF
    BACKGROUND New strains of meticillin-resistant Staphylococcus aureus (MRSA) may be associated with changes in rates of disease or clinical presentation. Conventional typing techniques may not detect new clonal variants that underlie changes in epidemiology or clinical phenotype. AIM To investigate the role of clonal variants of MRSA in an outbreak of MRSA bacteraemia at a hospital in England. METHODS Bacteraemia isolates of the major UK lineages (EMRSA-15 and -16) from before and after the outbreak were analysed by whole-genome sequencing in the context of epidemiological and clinical data. For comparison, EMRSA-15 and -16 isolates from another hospital in England were sequenced. A clonal variant of EMRSA-16 was identified at the outbreak hospital and a molecular signature test designed to distinguish variant isolates among further EMRSA-16 strains. FINDINGS By whole-genome sequencing, EMRSA-16 isolates during the outbreak showed strikingly low genetic diversity (P < 1 × 10(-6), Monte Carlo test), compared with EMRSA-15 and EMRSA-16 isolates from before the outbreak or the comparator hospital, demonstrating the emergence of a clonal variant. The variant was indistinguishable from the ancestral strain by conventional typing. This clonal variant accounted for 64/72 (89%) of EMRSA-16 bacteraemia isolates at the outbreak hospital from 2006. CONCLUSIONS Evolutionary changes in epidemic MRSA strains not detected by conventional typing may be associated with changes in disease epidemiology. Rapid and affordable technologies for whole-genome sequencing are becoming available with the potential to identify and track the emergence of variants of highly clonal organisms

    Digital Simulation for Automobile Maneuvers

    Full text link
    A new all-digital simulation of automobile handling allows severe maneuvers involving braking or accel eration and cornering. A novel feature is the in corporation of closed-loop control based on a mathematical model of the human driver. The program is modular and well-documented. The model includes provisions for nonlinear tire and suspension forces and moments; it also allows the user to switch off the nonlinearities and to include an antilock brake system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68886/2/10.1177_003754978103700304.pd

    Emergence of Bulk CsCl Structure in (CsCl)nCs+ Cluster Ions

    Full text link
    The emergence of CsCl bulk structure in (CsCl)nCs+ cluster ions is investigated using a mixed quantum-mechanical/semiempirical theoretical approach. We find that rhombic dodecahedral fragments (with bulk CsCl symmetry) are more stable than rock-salt fragments after the completion of the fifth rhombic dodecahedral atomic shell. From this size (n=184) on, a new set of magic numbers should appear in the experimental mass spectra. We also propose another experimental test for this transition, which explicitely involves the electronic structure of the cluster. Finally, we perform more detailed calculations in the size range n=31--33, where recent experimental investigations have found indications of the presence of rhombic dodecahedral (CsCl)32Cs+ isomers in the cluster beams.Comment: LaTeX file. 6 pages and 4 pictures. Accepted for publication in Phys. Rev.
    corecore