18 research outputs found

    Estimation of cooling rates during close-coupled gas atomization using secondary dendrite arm spacing measurement

    Get PDF
    Al-4 wt pct Cu alloy has been gas atomized using a commercial close-coupled gas-atomization system. The resulting metal powders have been sieved into six size fractions, and the SDAS has been determined using electron microscopy. Cooling rates for the powders have been estimated using a range of published conversion factors for Al-Cu alloy, with reasonable agreement being found between sources. We find that cooling rates are very low relative to those often quoted for gas-atomized powders, of the order of 10 K s for sub-38 μm powders. We believe that a number of numerical studies of gas atomization have overestimated the cooling rate during solidification, probably as a consequence of overestimating the differential velocity between the gas and the particles. From the cooling rates measured in the current study, we estimate that such velocities are unlikely to exceed 20 m s

    Research priorities for seabirds: improving conservation and management in the 21st century

    Get PDF
    Seabirds are facing a growing number of threats in both terrestrial and marine habitats, and many populations have experienced dramatic changes over past decades. Years of seabird research have improved our understanding of seabird populations and provided a broader understanding of marine ecological processes. In an effort to encourage future research and guide seabird conservation science, seabird researchers from 9 nations identified the 20 highest priority research questions and organized these into 6 general categories: (1) population dynamics, (2) spatial ecology, (3) tropho-dynamics, (4) fisheries interactions, (5) response to global change, and (6) management of anthropogenic impacts (focusing on invasive species, contaminants and protected areas). For each category, we provide an assessment of the current approaches, challenges and future directions. While this is not an exhaustive list of all research needed to address the myriad conservation challenges seabirds face, the results of this effort represent an important synthesis of current expert opinion across sub-disciplines within seabird ecology. As this synthesis highlights, research, in conjunction with direct management, education, and community engagement, can play an important role in facilitating the conservation and management of seabird populations and of the ocean ecosystems on which they and we depend

    Inhibited coarsening of a sprayformed and extruded hypereutectic aluminium-silicon alloy in the semi-solid state

    Full text link
    The microstructural evolution of a sprayformed and extruded hypereutectic aluminium-30% silicon-5% copper-2% magnesium alloy heated into the semi-solid state has been investigated. Liquid is formed initially by a quaternary eutectic reaction and then by a ternary melt reaction. These reactions occur relatively quickly. However, the binary Al-Si eutectic melt reaction takes a significant time – around several hours depending on the temperature. The coarsening rate constants (K) for the growth of the silicon particles are approximately 3 to 4 orders of magnitude lower than those for the majority of metal sprayformed alloys. This may be associated with difficulties in addition or removal of atoms from the low index silicon facets. Where growth does occur, agglomeration of silicon particles may play a large role, especially at higher liquid contents. Electron backscatter diffraction (EBSD) gives evidence of agglomeration, and furthermore shows that high angle silicon-silicon boundaries are not wetted with liquid

    The terahertz intensity mapper (TIM): Far-infrared balloon mission for spectroscopic galaxy evolution studies

    No full text
    Understanding the formation and evolution of galaxies over cosmic time is one of the foremost goals of astrophysics and cosmology today. The cosmic star formation rate has undergone a dramatic evolution over the course of the last 14 billion years, and dust obscured star forming galaxies (DSFGs) are a crucial component of this evolution. A variety of important, bright, and unextincted diagnostic lines are present in the far-infrared (FIR) which can provide crucial insight into the physical conditions of galaxy evolution, including the instantaneous star formation rate, the effect of AGN feedback on star formation, the mass function of the stars, metallicities, and the spectrum of their ionizing radiatio
    corecore