166 research outputs found

    Statistical Analysis of Different Muon-antineutrino->Electron-antineutrino Searches

    Full text link
    A combined statistical analysis of the experimental results of the LSND and KARMEN \numubnueb oscillation search is presented. LSND has evidence for neutrino oscillations that is not confirmed by the KARMEN experiment. This joint analysis is based on the final likelihood results for both data sets. A frequentist approach is applied to deduce confidence regions. At a combined confidence level of 36%, there is no area of oscillation parameters compatible with both experiments. For the complementary confidence of 1-0.36=64%, there are two well defined regions of oscillation parameters (sin^2(2th),Dm^2) compatible with both experiments.Comment: 25 pages, including 10 figures, submitted to Phys. Rev.

    Learning from text-based close call data

    Get PDF
    A key feature of big data is the variety of data sources that are available; which include not just numerical data but also image or video data or even free text. The GB railways collects a large volume of free text data daily from railway workers describing close call hazard reports: instances where an accident could have – but did not – occur. These close call reports contain valuable safety information which could be useful in managing safety on the railway, but which can be lost in the very large volume of data – much larger than is viable for a human analyst to read. This paper describes the application of rudimentary natural language processing (NLP) techniques to uncover safety information from close calls. The analysis has proven that basic information extraction is possible using the rudimentary techniques, but has also identified some limitations that arise using only basic techniques. Using these findings further research in this area intends to look at how the techniques that have been proven to date can be improved with the use of more advanced NLP techniques coupled with machine-learning

    Aerosolized Amiloride for the Treatment of Lung Disease in Cystic Fibrosis

    Get PDF
    To the Editor: The April 26 issue of the Journal presented encouraging results by Knowles et al. regarding the beneficial effects of aerosolized amiloride in the treatment of cystic fibrosis.1 The introduction and discussion sections of this article described the function of amiloride as an inhibitor of sodium transport in the airway epithelium, and the authors suggested that the beneficial effects observed were exerted “at least in part by increasing the clearance of secretions.” Although the results of this investigation were promising in terms of the improvement in the decline of forced vital capacity in patients with cystic fibrosis, this

    Physics, Topology, Logic and Computation: A Rosetta Stone

    Full text link
    In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology: namely, a linear operator behaves very much like a "cobordism". Similar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of "closed symmetric monoidal category". We assume no prior knowledge of category theory, proof theory or computer science.Comment: 73 pages, 8 encapsulated postscript figure

    The Mathematical Universe

    Full text link
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and Godel incompleteness. I hypothesize that only computable and decidable (in Godel's sense) structures exist, which alleviates the cosmological measure problem and help explain why our physical laws appear so simple. I also comment on the intimate relation between mathematical structures, computations, simulations and physical systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs; more details at http://space.mit.edu/home/tegmark/toe.htm

    Anti-counterfeiting: Mixing the Physical and the Digital World

    Get PDF
    In this paper, we overview a set of desiderata for building digital anti-counterfeiting technologies that rely upon the difficulty of manufacturing randomized complex 3D objects. Then, we observe how this set is addressed by RF-DNA, an anti-counterfeiting technology recently proposed by DeJean and Kirovski. RF-DNA constructs certificates of authenticity as random objects that exhibit substantial uniqueness in the electromagnetic domain

    Long-term Atmospheric Mercury Wet Deposition at Underhill, Vermont

    Full text link
    Section 112(m) of the 1990 Clean Air Act Amendments, referred to as the Great Waters Program, mandated an assessment of atmospheric deposition of hazardous air pollutants (HAPs) to Lake Champlain. Mercury (Hg) was listed as a priority HAP and has continued to be a high priority for a number of national and international programs. An assessment of the magnitude and seasonal variation of atmospheric Hg levels and deposition in the Lake Champlain basin was initiated in December 1992 which included event precipitation collection, as well as collection of vapor and particle phase Hg in ambient air. Sampling was performed at the Proctor Maple Research Center in Underhill Center, VT. The range in the annual volume-weighted mean concentration for Hg in precipitation was 7.8–10.5 ng/l for the 11-year sampling period and the average amount of Hg deposited with each precipitation event was 0.10 μg/m 2 . The average amount of Hg deposited through precipitation each year from 1993 to 2003 was 9.7 μg/m 2 /yr. A seasonal pattern for Hg in precipitation is clearly evident, with increased Hg concentrations and deposition observed during spring and summer months. While a clear trend in the 11-year event deposition record at Underhill was not observed, a significant decrease in the event max-to-monthly ratio was observed suggesting that a major source influence was controlled over time. Discrete precipitation events were responsible for significant fractions of the monthly and annual loading of Hg to the forested ecosystem in Vermont. Monthly-averaged temperatures were found to be moderately correlated with monthly volume-weighted mean Hg concentrations ( r 2 =0.61) and Hg deposition ( r 2 =0.67) recorded at the Vermont site. Meteorological analysis indicated the highest levels of Hg in precipitation were associated with regional transport from the west, southwest, and south during the warmer months.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44444/1/10646_2004_Article_6260.pd

    A Compact Dication Source for Ba2+^{2+} Tagging and Heavy Metal Ion Sensor Development

    Full text link
    We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cobalt samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+\mathrm{Ba^{2+}} ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+^{2+} and Cd2+^{2+} also demonstrated for this purpose

    Pulmonary hypertension: intensification and personalization of combination Rx (PHoenix): a phase IV randomized trial for the evaluation of dose‐response and clinical efficacy of riociguat and selexipag using implanted technologies

    Get PDF
    Approved therapies for the treatment of patients with pulmonary arterial hypertension (PAH) mediate pulmonary vascular vasodilatation by targeting distinct biological pathways. International guidelines recommend that patients with an inadequate response to dual therapy with a phosphodiesterase type-5 inhibitor (PDE5i) and endothelin receptor antagonist (ERA), are recommended to either intensify oral therapy by adding a selective prostacyclin receptor (IP) agonist (selexipag), or switching from PDE5i to a soluble guanylate-cyclase stimulator (sGCS; riociguat). The clinical equipoise between these therapeutic choices provides the opportunity for evaluation of individualized therapeutic effects. Traditionally, invasive/hospital-based investigations are required to comprehensively assess disease severity and demonstrate treatment benefits. Regulatory-approved, minimally invasive monitors enable equivalent measurements to be obtained while patients are at home. In this 2 × 2 randomized crossover trial, patients with PAH established on guideline-recommended dual therapy and implanted with CardioMEMS™ (a wireless pulmonary artery sensor) and ConfirmRx™ (an insertable cardiac rhythm monitor), will receive ERA + sGCS, or PDEi + ERA + IP agonist. The study will evaluate clinical efficacy via established clinical investigations and remote monitoring technologies, with remote data relayed through regulatory-approved online clinical portals. The primary aim will be the change in right ventricular systolic volume measured by magnetic resonance imaging (MRI) from baseline to maximal tolerated dose with each therapy. Using data from MRI and other outcomes, including hemodynamics, physical activity, physiological measurements, quality of life, and side effect reporting, we will determine whether remote technology facilitates early evaluation of clinical efficacy, and investigate intra-patient efficacy of the two treatment approaches
    corecore