710 research outputs found

    Follow The Leader: Some Thoughts on Leadership

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68818/2/10.1177_107179199500200115.pd

    Parents, children and the porous boundaries of the sexual family in law and popular culture

    No full text
    This article focuses on a perceived ideological overlap between popular cultural and judicial treatments of sex and conjugality that contributes to a discursive construction of parenthood and parenting. The author perceives that in both legal and popular cultural texts, there is a sense in which notions of ‘natural’ childhood are discursively constituted as being put at risk by those who reproduce outside of dominant sexual norms, and that signs of normative sexuality (typically in the form of heterosexual coupling) may be treated as a sign of safety. These ideas are rooted in ancient associations between fertility, sexuality and femininity that can also be traced in the historical development of the English language. With the help of commentators such as Martha Fineman, the article situates parents and children within a discourse of family which prioritises conjugality, with consequences for the ways in which the internal and external boundaries of families are delineated

    Combined CI+MBPT calculations of energy levels and transition amplitudes in Be, Mg, Ca, and Sr

    Get PDF
    Configuration interaction (CI) calculations in atoms with two valence electrons, carried out in the V(N-2) Hartree-Fock potential of the core, are corrected for core-valence interactions using many-body perturbation theory (MBPT). Two variants of the mixed CI+MBPT theory are described and applied to obtain energy levels and transition amplitudes for Be, Mg, Ca, and Sr

    Coherent quantum transport in hybrid Superconductor-2DEG-Superconductor planar Josephson junctions

    Get PDF
    The following topics are dealt with: Josephson effect; SQUIDs; high-temperature superconductors; nanowires; superconducting thin films; superconducting photodetectors; readout electronics; superconducting materials; critical current density (superconductivity); photon counting

    On-chip hybrid superconducting-semiconducting quantum circuit

    Get PDF
    In this paper, we experimentally demonstrate a hybrid superconducting-semiconducting circuit consisting of eight planar and ballistic Nb-In 0.75 Ga 0.25 As-Nb Josephson junctions. E-beam lithography was used to fabricate the Josephson junctions on an InGaAs chip. In contrast to our previous studies on long junctions that were fabricated by photolithography, in this study, we observe the induced superconductivity in an In 0.75 Ga 0.25 As quantum well at higher temperatures, between T = 0.3 and 1 K ( 3 He cryostat temperature range). The induced superconducting gap of Δ ind = 0.65 meV was measured at lowest base temperature T = 300 mK. The effect of temperature and magnetic fields B on the induced superconductivity are presented. Our results suggest that our In 0.75 Ga 0.25 As heterostructure is a promising scalable material system for quantum processing and computing applications

    Statistical disclosure control in tabular data

    Get PDF
    Data disseminated by National Statistical Agencies (NSAs) can be classified as either microdata or tabular data. Tabular data is obtained from microdata by crossing one or more categorical variables. Although cell tables provide aggregated information, they also need to be protected. This chapter is a short introduction to tabular data protection. It contains three main sections. The first one shows the different types of tables that can be obtained, and how they are modeled. The second describes the practical rules for detection of sensitive cells that are used by NSAs. Finally, an overview of protection methods is provided, with a particular focus on two of them: “cell suppression problem” and “controlled tabular adjustment”.Postprint (published version

    Large‐scale on‐chip integration of gate‐voltage addressable hybrid superconductor–semiconductor quantum wells field effect nano‐switch arrays

    Get PDF
    Stable, reproducible, scalable, addressable, and controllable hybrid superconductor–semiconductor (S–Sm) junctions and switches are key circuit elements and building blocks of gate-based quantum processors. The electrostatic field effect produced by the split gate voltages facilitates the realization of nano-switches that can control the conductance or current in the hybrid S–Sm circuits based on 2D semiconducting electron systems. Here, a novel realization of large-scale scalable, and gate voltage controllable hybrid field effect quantum chips is experimentally demonstrated. Each chip contains arrays of split gate field effect hybrid junctions, that work as conductance switches, and are made from In0.75Ga0.25As quantum wells integrated with Nb superconducting electronic circuits. Each hybrid junction in the chip can be controlled and addressed through its corresponding source–drain and two global split gate contact pads that allow switching between their (super)conducting and insulating states. A total of 18 quantum chips are fabricated with 144 field effect hybrid Nb- In0.75Ga0.25As 2DEG-Nb quantum wires and the electrical response, switching voltage (on/off) statistics, quantum yield, and reproducibility of several devices at cryogenic temperatures are investigated. The proposed integrated quantum device architecture allows control of individual junctions in a large array on a chip useful for emerging cryogenic quantum technologies

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
    • 

    corecore