1,019 research outputs found

    Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders

    Get PDF
    Multi-technique characterisation of sodium carbonate-activated blast furnace slag binders was conducted in order to determine the influence of the carbonate groups on the structural and chemical evolution of these materials. At early age (<4 days) there is a preferential reaction of Ca2+ with the CO3 2− from the activator, forming calcium carbonates and gaylussite, while the aluminosilicate component of the slag reacts separately with the sodium from the activator to form zeolite NaA. These phases do not give the high degree of cohesion necessary for development of high early mechanical strength, and the reaction is relatively gradual due to the slow dissolution of the slag under the moderate pH conditions introduced by the Na2CO3 as activator. Once the CO3 2− is exhausted, the activation reaction proceeds in similar way to an NaOH-activated slag binder, forming the typical binder phases calcium aluminium silicate hydrate and hydrotalcite, along with Ca-heulandite as a further (Ca,Al)-rich product. This is consistent with the significant gain in compressive strength and reduced porosity observed after 3 days of curing. The high mechanical strength and reduced permeability developed in these materials beyond 4 days of curing elucidate that Na2CO3-activated slag can develop desirable properties for use as a building material, although the slow early strength development is likely to be an issue in some applications. These results suggest that the inclusion of additions which could control the preferential consumption of Ca2+ by the CO3 2− might accelerate the reaction kinetics of Na2CO3-activated slag at early times of curing, enhancing the use of these materials in engineering applications

    Intra-articular spine injections of steroid as a contributing factor to glaucoma

    Get PDF
    Letter to the editorQueena Qin, Robert J. Casson, Daniel Myers, Sudha Cugat

    On manifolds with nonhomogeneous factors

    Get PDF
    We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces

    Nanostructural characterization of geopolymers by advanced beamline techniques

    Get PDF
    This paper presents the outcomes of a series of beamline-based studies, the results of which are combined to provide a more detailed multiscale understanding of the structure and chemistry of geopolymer binders. The range of beamline-based characterization techniques which have been applied to the study of geopolymer binders is increasing rapidly; although no single technique can provide a holistic view of binder structure across all the length scales which are of importance in determining strength development and durability, the synergy achievable through the combination of multiple beamline techniques is leading to rapid advances in knowledge in this area. Studies based around beamline infrared and X-ray fluorescence microscopy, in situ and ex situ neutron pair distribution function analysis, and nano- and micro-tomography, are combined to provide an understanding of geopolymer gel chemistry, nano- and microstructure in two and three dimensions, and the influences of seeded nucleation and precursor chemistry in these key areas. The application of advanced characterization methods in recent years has brought the understanding of geopolymer chemistry from a point, not more than a decade ago, when the analysis of the detailed chemistry of the aluminosilicate binder gel was considered intractable due to its disordered (“X-ray amorphous”) nature, to the present day where the influence of key compositional parameters on nanostructure is well understood, and both gel structure and reaction kinetics can be manipulated through methods including seeding, temperature variation, and careful mix design. This paper therefore provides a review outlining the value of nanotechnology – and particularly nanostructural characterization – in the development and optimization of a new class of environmentally beneficial cements and concretes. Key engineering parameters, in particularly strength development and permeability, are determined at a nanostructural level, and so it is essential that gel structures can be analyzed and manipulated at this level; beamline-based characterization techniques are critical in providing the ability to achieve this goal

    Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models

    Full text link
    The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.Comment: 31 pages. V2: minor corrections, references adde

    Hawking Temperature in Taub-NUT (A)dS spaces via the Generalized Uncertainty Principle

    Full text link
    Using the extended forms of the Heisenberg uncertainty principle from string theory and the quantum gravity theory, we drived Hawking temperature of a Taub-Nut-(A)dS black hole. In spite of their distinctive natures such as asymptotically locally flat and breakdown of the area theorem of the horizon for the black holes, we show that the corrections to Hawking temperature by the generalized versions of the the Heisenberg uncertainty principle increases like the Schwarzschild-(A)dS black hole and give the reason why the Taub-Nut-(A)dS metric may have AdS/CFT dual picture.Comment: version published in General Relativity and Gravitatio

    Minority carrier lifetime in silicon photovoltaics : the effect of oxygen precipitation

    Get PDF
    Single-crystal Czochralski silicon used for photovoltaics is typically supersaturated with interstitial oxygen at temperatures just below the melting point. Oxide precipitates therefore can form during ingot cooling and cell processing, and nucleation sites are typically vacancy-rich regions. Oxygen precipitation gives rise to recombination centres, which can reduce cell efficiencies by as much as 4% (absolute). We have studied the recombination behaviour in p-type and n-type monocrystalline silicon with a range of doping levels intentionally processed to contain oxide precipitates with a range of densities, sizes and morphologies. We analyse injection-dependent minority carrier lifetime measurements to give a full parameterisation of the recombination activity in terms of Shockley–Read–Hall statistics. We intentionally contaminate specimens with iron, and show recombination activity arises from iron segregated to oxide precipitates and surrounding defects. We find that phosphorus diffusion gettering reduces the recombination activity of the precipitates to some extent. We also find that bulk iron is preferentially gettered to the phosphorus diffused layer rather than to oxide precipitates

    Bubbling AdS and Vacuum String Field Theory

    Full text link
    We show that a family of 1/2--BPS states of N=4\N=4 SYM is in correspondence with a family of classical solutions of VSFT with a BB--field playing the role of the inverse Planck constant. We show this correspondence by relating the Wigner distributions of the NN fermion systems representing such states, to low energy space profiles of systems of VSFT D-branes. In this context the Pauli exclusion principle appears as a consequence of the VSFT projector equation. The family of 1/2--BPS states maps through coarse--graining to droplet LLM supergravity solutions. We discuss the possible meaning of the corresponding coarse graining in the VSFT side.Comment: 23 pages, subsection 4.1 added, Appendix suppressed. to be published in NP

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    Phenomenology of Randall-Sundrum Black Holes

    Get PDF
    We explore the phenomenology of microscopic black holes in the S1/Z2S^1/Z_2 Randall-Sundrum (RS) model. We consider the canonical framework in which both gauge and matter fields are confined to the brane and only gravity spills into the extra dimension. The model is characterized by two parameters, the mass of the first massive graviton (m1)(m_1), and the curvature 1/1/\ell of the RS anti-de Sitter space. We compute the sensitivity of present and future cosmic ray experiments to various regions of \ell and m1,m_1, and compare with that of Runs I and II at the Tevatron. As part of our phenomenological analysis, we examine constraints placed on \ell by AdS/CFT considerations.Comment: Version to appear in Physical Review D; contains additional analysis on sensitivity of OW
    corecore