182 research outputs found

    Three-spined stickleback armour predicted by body size, minimum winter temperature and pH

    Get PDF
    Similar phenotypes evolve under equivalent environmental conditions through parallel evolution. Because they have repeatedly invaded and adapted to new freshwater environments, the three-spined stickleback (Gasterosteus aculeatus) offers a powerful system for understanding the agents of selection in nature that drive parallel evolution. Here we examine the ecological and environmental variables responsible for morphological variation in three-spined stickleback populations across its European range. We collected fish from 85 populations, encompassing much of the European latitudinal range of the species and including lowland rivers and lakes, coastal lagoons, and moorland ponds. We measured biotic and environmental variables at all sites along with morphological traits for 2,358 individuals. Using an information theory approach, we identified body size, minimum average winter temperature and pH as primary predictors of stickleback armour evolution, challenging current hypotheses for stickleback morphological diversification and demonstrating the fundamental role played by body size and scaling in mediating responses to selection. Stickleback lateral plate phenotype represents a potentially powerful tool for monitoring change in climate variables across the northern temperate region

    Small-Scale Vertical Movements of Summer Flounder Relative to Diurnal, Tidal, and Temperature Changes

    Get PDF
    Observation of animal movements on small spatial scales provides a means to understand how large-scale species distributions are established from individual behavioral decisions. Small-scale vertical movements of 14 Summer Flounder Paralichthys dentatus residing in Chesapeake Bay were observed by using depth data collected with archival tags. A generalized linear mixed model was employed to examine the relationship between these vertical movements and environmental covariates such as tidal state, time of day, lunar phase, and temperature. Vertical movements increased with warming water temperatures, and this pattern was most apparent at night and during rising and falling tides. Fish generally exhibited greater vertical movements at night, but the difference between vertical movements in the day and those at night decreased as fish increased in size. Results from this study fill a void in understanding the small-scale movements of Summer Flounder and could be incorporated into individual-based models to investigate how species distributions develop in response to environmental conditions

    Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion

    Full text link
    We present theoretical and experimental study of preparing maximally entangled two-photon polarization states, or Bell states, using femtosecond pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be removed by using an interferometric technique without spectral and amplitude post-selection. We then analyze the recently introduced Bell state preparation scheme using type-I SPDC. Theoretically, both methods offer the same results, however, type-I SPDC provides experimentally superior methods of preparing Bell states in femtosecond pulse pumped SPDC. Such a pulsed source of highly entangled photon pairs is useful in quantum communications, quantum cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR

    Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea)

    Get PDF
    International audienceRates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach

    Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control

    Get PDF
    We discuss a recent approach to investigating cognitive control, which has the potential to deal with some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a formal, computational model that performs the task at hand and whose performance matches that of a research participant. The internal variables in such a model might then be taken as proxies for latent variables computed in the brain. We discuss the potential advantages of such an approach for the study of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions underlying the interpretation of data obtained using this approach
    corecore