198 research outputs found
Autocalibration with the Minimum Number of Cameras with Known Pixel Shape
In 3D reconstruction, the recovery of the calibration parameters of the
cameras is paramount since it provides metric information about the observed
scene, e.g., measures of angles and ratios of distances. Autocalibration
enables the estimation of the camera parameters without using a calibration
device, but by enforcing simple constraints on the camera parameters. In the
absence of information about the internal camera parameters such as the focal
length and the principal point, the knowledge of the camera pixel shape is
usually the only available constraint. Given a projective reconstruction of a
rigid scene, we address the problem of the autocalibration of a minimal set of
cameras with known pixel shape and otherwise arbitrarily varying intrinsic and
extrinsic parameters. We propose an algorithm that only requires 5 cameras (the
theoretical minimum), thus halving the number of cameras required by previous
algorithms based on the same constraint. To this purpose, we introduce as our
basic geometric tool the six-line conic variety (SLCV), consisting in the set
of planes intersecting six given lines of 3D space in points of a conic. We
show that the set of solutions of the Euclidean upgrading problem for three
cameras with known pixel shape can be parameterized in a computationally
efficient way. This parameterization is then used to solve autocalibration from
five or more cameras, reducing the three-dimensional search space to a
two-dimensional one. We provide experiments with real images showing the good
performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi
Self-calibration and motion recovery from silhouettes with two mirrors
LNCS v. 7724-7727 (pts. 1-4) entitled: Computer vision - ACCV 2012: 11th Asian Conference on Computer Vision ... 2012: revised selected papersThis paper addresses the problem of self-calibration and motion recovery from a single snapshot obtained under a setting of two mirrors. The mirrors are able to show five views of an object in one image. In this paper, the epipoles of the real and virtual cameras are firstly estimated from the intersection of the bitangent lines between corresponding images, from which we can easily derive the horizon of the camera plane. The imaged circular points and the angle between the mirrors can then be obtained from equal angles between the bitangent lines, by planar rectification. The silhouettes produced by reflections can be treated as a special circular motion sequence. With this observation, technique developed for calibrating a circular motion sequence can be exploited to simplify the calibration of a single-view two-mirror system. Different from the state-of-the-art approaches, only one snapshot is required in this work for self-calibrating a natural camera and recovering the poses of the two mirrors. This is more flexible than previous approaches which require at least two images. When more than a single image is available, each image can be calibrated independently and the problem of varying focal length does not complicate the calibration problem. After the calibration, the visual hull of the objects can be obtained from the silhouettes. Experimental results show the feasibility and the preciseness of the proposed approach. © 2013 Springer-Verlag.postprin
Road environment modeling using robust perspective analysis and recursive Bayesian segmentation
Recently, vision-based advanced driver-assistance systems (ADAS) have received a new increased interest to enhance driving safety. In particular, due to its high performance–cost ratio, mono-camera systems are arising as the main focus of this field of work. In this paper we present a novel on-board road modeling and vehicle detection system, which is a part of the result of the European I-WAY project. The system relies on a robust estimation of the perspective of the scene, which adapts to the dynamics of the vehicle and generates a stabilized rectified image of the road plane. This rectified plane is used by a recursive Bayesian classi- fier, which classifies pixels as belonging to different classes corresponding to the elements of interest of the scenario. This stage works as an intermediate layer that isolates subsequent modules since it absorbs the inherent variability of the scene. The system has been tested on-road, in different scenarios, including varied illumination and adverse weather conditions, and the results have been proved to be remarkable even for such complex scenarios
Indoor Calibration using Segment Chains
International audienceIn this paper, we present a new method for line segments matching for indoor reconstruction. Instead of matching individual seg- ments via a descriptor like most methods do, we match segment chains that have a distinctive topology using a dynamic programing formulation. Our method relies solely on the geometric layout of the segment chain and not on photometric or color profiles. Our tests showed that the presented method is robust and manages to produce calibration information even under a drastic change of viewpoint
The Absolute Line Quadric and Camera Autocalibration
We introduce a geometrical object providing the same information as the absolute conic: the absolute line quadric (ALQ). After the introduction of the necessary exterior algebra and Grassmannian geometry tools, we analyze the Grassmannian of lines of P^3 from both the projective and Euclidean points of view. The exterior algebra setting allows then to introduce the ALQ as a quadric arising very naturally from the dual absolute quadric. We fully characterize the ALQ and provide clean relationships to solve the inverse problem, i.e., recovering the Euclidean structure of space from the ALQ. Finally we show how the ALQ turns out to be particularly suitable to address the Euclidean autocalibration of a set of cameras with square pixels and otherwise varying intrinsic parameters, providing new linear and non-linear algorithms for this problem. We also provide experimental results showing the good performance of the techniques
Line geometry and camera autocalibration
We provide a completely new rigorous matrix formulation of the absolute quadratic complex (AQC), given by the set of lines intersecting the absolute conic. The new results include closed-form expressions for the camera intrinsic parameters in terms of the AQC, an algorithm to obtain the dual absolute quadric from the AQC using straightforward matrix operations, and an equally direct computation of a Euclidean-upgrading homography from the AQC. We also completely characterize the 6×6 matrices acting on lines which are induced by a spatial homography. Several algorithmic possibilities arising from the AQC are systematically explored and analyzed in terms of efficiency and computational cost. Experiments include 3D reconstruction from real images
Estimating Geo-temporal Location of Stationary Cameras Using Shadow Trajectories
Abstract. Using only shadow trajectories of stationary objects in a scene, we demonstrate that using a set of six or more photographs are sufficient to ac-curately calibrate the camera. Moreover, we present a novel application where, using only three points from the shadow trajectory of the objects, one can ac-curately determine the geo-location of the camera, up to a longitude ambiguity, and also the date of image acquisition without using any GPS or other special instruments. We refer to this as “geo-temporal localization”. We consider possi-ble cases where ambiguities can be removed if additional information is avail-able. Our method does not require any knowledge of the date or the time when the pictures are taken, and geo-temporal information is recovered directly from the images. We demonstrate the accuracy of our technique for both steps of cali-bration and geo-temporal localization using synthetic and real data.
- …
