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Abstract. We introduce a geometrical object providing the same information
as the absolute conic: the absolute line quadric (ALQ). After the introduction
of the necessary exterior algebra and Grassmannian geometry tools, we analyze
the Grassmannian of lines of P3 from both the projective and Euclidean points
of view. The exterior algebra setting allows then to introduce the ALQ as a

quadric arising very naturally from the dual absolute quadric. We fully char-
acterize the ALQ and provide clean relationships to solve the inverse problem,
i.e., recovering the Euclidean structure of space from the ALQ. Finally we show
how the ALQ turns out to be particularly suitable to address the Euclidean
autocalibration of a set of cameras with square pixels and otherwise varying
intrinsic parameters, providing new linear and non-linear algorithms for this
problem. We also provide experimental results showing the good performance
of the techniques.

1. Introduction

Most of the existing methods for the obtainment of 3D reconstructions from sets
of uncalibrated views operate in two main steps. The first one provides a projective
reconstruction in which 3D world appears distorted by a space homography. The
second one restores the Euclidean structure and provides the camera positions and
intrinsic parameters. The first paper to show the possibility of performing this
Euclidean upgrading was the seminal paper [13]. No a priori knowledge of the scene
was necessary, but only some restrictions in the intrinsic camera parameters, namely
their constancy between views. Since then, a wealth of autocalibration techniques
considering this or other restrictions appeared. The book [9] is an excellent reference
for the topic.

As making an Euclidean upgrading is equivalent to finding the absolute conic [17,
p. 254] in the projectively reconstructed scene, all these methods have in common
the explicit or implicit consideration of the absolute conic. The absolute conic is
a non-degenerated imaginary conic lying on the plane at infinity, with the same
equations in any Euclidean coordinate system. One of the main difficulties in
finding it is due to the fact that it is a one-dimensional object in a three-dimensional
space, i.e., its codimension is two. The finding of objects of codimension one, i.e.,
given by only one equation, is usually simpler and more stable. The absolute
dual quadric (DAQ) [20] came to overcome this problem. This is a rank-three
quadric consisting of all the planes which are tangent to the absolute conic, including
the plane at infinity itself. It is a codimension-one object of the dual projective
space P3∗.
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This is not the only codimension-one object equivalent to the absolute conic.
There is a standard tool in algebraic geometry called the Chow construction [8,
p. 268]. This notion has also been considered in [12] to recover algebraic curves
from projections. In the case of the absolute conic, the Chow construction consists
of all the lines intersecting this conic. Here we study this set of lines using the
mapping that assigns to each line the line of its orthogonal directions (quite as
the DAQ can be seen as the mapping that assigns to each plane its orthogonal
direction). We will term this mapping the absolute line quadric (ALQ).

In a previous work [21] an equivalent object was characterized as a pencil of
quadrics in P5. In this paper we pursue this work, showing how the use of ex-
terior algebra provides a deeper geometrical insight resulting in new results and
algorithms. More specifically:
1. We provide a new definition of the ALQ that relates it directly with the DAQ.
2. We develop new proofs of known properties of the ALQ which turn out to be
very simple as a result of the exterior algebra setting.
3. We introduce a new technique for the direct recovery of the DAQ from the ALQ.
4. We prove a result that allows the direct obtainment of an Euclidean coordinate
system from the ALQ (cf. [15]).
5. We provide a new non-linear algorithm for the autocalibration problem combin-
ing the use of the ALQ with sequential quadratic programming (SQP) optimization.

A concept which can be proved to be equivalent to the ALQ first appeared
in the computer vision literature in [15], in the form of symmetric 6 × 6 matrix
that characterized the orthogonality of two lines in space expressed in terms of
their Plücker coordinates. This work was based in turn in the characterization of
zero-skew perspective perspective projection matrices [11][14]. Among other results
in [15], we remark the proposal of a procedure to parameterize the space of such
square matrices. In this relevant precedent, linear and non-linear autocalibration
algorithms were proposed for the case of cameras with rectangular pixels (i.e., with
zero-skew projection matrices).

To work with the ALQ, one must first choose a convenient description of the set
of lines of space. The choice in this paper is to represent each line by means of a
bivector or a bicovector [3][8][16]. This compact geometric treatment is computa-
tionally efficient and makes worth the necessary algebraic machinery: exterior alge-
bra, which is receiving an increasing attention within the field of 3D computer vi-
sion, especially in the formulation of Grassmann-Cayley algebra [2][4][6][10]. In [1],
geometric algebra is employed for the autocalibration from two cameras with fixed
parameters and partial knowledge of the motion. Tensor algebra has been consid-
ered as well [19]. Trying to make the paper as self-contained as possible, we provide
the reader with the necessary definitions and results in Section 2.

Much of the power of exterior algebra within 3D computer vision lies in its capa-
bility to deal with problems involving sums and intersections of linear spaces. One
of the contributions of this paper will be a procedure to perform these operations
in a general way, thus extending the possibilities of the meet and join operators of
the Grassmann-Cayley formulation. This is developed in Section 3.

The study of the ALQ requires a working knowledge of 3D line geometry in the
context of exterior algebra that is provided in Section 4. In Section 5 our efforts
in developing this mathematical machinery are rewarded with a straightforward
expression of the ALQ in terms of the DAQ (see equation (7)). We then see how
the ALQ encodes the Euclidean structure of space and how we can cleanly recover
the DAQ from the knowledge of the ALQ. This is one of the main contributions of
this paper.
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In [21] a linear algorithm was theoretically proposed to recover the Euclidean
structure of space from of a set of cameras with known pixel shape and varying
parameters using the calibration pencil. In Section 6 it is shown how the developed
exterior algebra techniques of Section 5 allow for an improvement of this algorithm.
We also provide a more costly non-linear algorithm showing a significantly better
performance. Experimental results for these algorithms are provided.

2. Introduction to tensor and exterior algebra

In this section we summarize the necessary algebraic machinery for the paper.
A general reference for this topic is [3].

We start with some basic notation. The field of complex numbers will be denoted
by C. If V is a complex vector space, we will denote by V ∗ the dual space of V ,
i.e., the vector space of linear mappings α : V → C. If {v0, . . . , vn} is a basis of V ,
we denote by {v∗0 , . . . , v∗n} its dual basis of V ∗, defined by v∗i (vj) = δij where δij

stands for Kronecker’s delta. The projective space associated to V will be denoted
by P (V ). In the case that V = Cn, we will write Pn = P (Cn). Equality up to a
non-zero scale factor will be denoted by ∼.

2.1. Tensor product. Let V and W be complex vector spaces. The tensor product
V ⊗W is a complex vector space generated by the linear combinations of the formal
expressions v⊗w for v ∈ V and w ∈ W , where the following identities are imposed
to hold true:

(λ1v1 + λ2v2) ⊗ w = λ1v1 ⊗ w + λ2v2 ⊗ w

v ⊗ (λ1w1 + λ2w2) = λ1v ⊗ w1 + λ2v ⊗ w2

for any λ1, λ2 ∈ C, v, v1, v2 ∈ V and any w, w1, w2 ∈ W . An alternative more
formal definition of tensor product can be found in [3].

Let {v0, . . . , vn} and {w0, . . . , wm} be bases of V and W , respectively (we use
indices from 0 in order that the last index coincides with the dimension of the
associated projective space). The elements of the form vi⊗wj , constitute a basis of
V ⊗W , so any element a ∈ V ⊗W can be written as a =

∑
i,j aijvi ⊗wj for certain

coefficients aij ∈ C. Consequently the dimension of V ⊗ W is the product of the
dimensions of the factors. This construction generalizes to the tensor product of
any number of complex vector spaces. In particular we will denote by

⊗k
V the

k-fold tensor product V ⊗ · · · ⊗ V .

2.2. Contractions. Given b = u1 ⊗ · · · ⊗ uk ∈ ⊗k
V and β = α1 ⊗ · · · ⊗ αl ∈⊗l

V ∗, and a pair of indexes 1 ≤ i ≤ k, 1 ≤ j ≤ l, we define the contraction
Ci

j(a ⊗ β) ∈ ⊗k−1 V ⊗ ⊗l−1 V ∗ by the rule

Ci
j(a ⊗ β) = αj(ui)u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ uk ⊗ α1 ⊗ · · · ⊗ α̂j ⊗ · · · ⊗ αl,

where ûi and α̂j stand for eliminated elements. Extended by linearity, the operation
Ci

j defines a linear mapping

Ci
j :

k⊗
V ⊗

l⊗
V � →

k−1⊗
V ⊗

l−1⊗
V �.

2.3. Interpretation of V ⊗V ∗. The tensor product V ⊗V ∗ can be identified either
with the space End(V ) of endomorphisms of V (i.e., the set of linear mappings of V
on itself) or with End(V ∗). The identification is very natural, for given α = V ⊗V ∗

we can define a mapping V → V sending V � w �→ C1
1 (w ⊗ α) ∈ V . Analogously,

the endomorphism of V ∗ corresponding to α is given by V ∗ � γ �→ C2
1 (α⊗γ) ∈ V ∗.

To see this in terms of coordinates, consider a basis {v0, . . . , vn} of V and its
dual basis {v∗0 , . . . , v∗n} of V ∗. We can write α =

∑
i,j αijvi ⊗ v∗j and w =

∑
i λivi,
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we have that C1
1 (w ⊗ α) =

∑
i(

∑
j αijλj)vi. So the matrix of the endomorphism is

given by (αij). Analogously, the endomorphism of V ∗ is given by the transposed
matrix (αij)t. From this it easily follows that decomposable tensors of V ⊗V ∗, i.e.,
elements of the form a⊗ β ∈ V ⊗ V ∗, are characterized by having matrices of rank
one.

2.4. Exterior product. The subspace of V ⊗ V spanned by the elements of the
form v⊗w−w⊗v, v, w ∈ V , is called the exterior product space V ∧V =

∧2
V . We

will denote by ∧ the exterior or wedge product v∧w = 1
2 (v⊗w−w⊗v). Alternatively,

V ∧ V can be seen as the vector space generated by linear combinations of formal
expressions v ∧ w, with v, w ∈ V where the following identities hold:

(λ1v1 + λ2v2) ∧ w = λ1v1 ∧ w + λ2v2 ∧ w

v ∧ (λ1w1 + λ2w2) = λ1v ∧ w1 + λ2v ∧ w2

v ∧ w = −w ∧ v.

Elements of
∧2 V will be called bivectors. Analogously, elements of

∧2 V ∗ will be
called bicovectors. Given a basis {v0, . . . , vn} of V , the

(
n+1

2

)
elements of the form

vi ∧ vj , 0 ≤ i < j ≤ n constitute a basis of V ∧ V .
Analogously, we can define the exterior product

∧k
V ⊂ ⊗k

V as the subspace
generated by the expressions of the form

(1) u1 ∧ · · · ∧ uk =
1
r!

∑
σ

(−1)|σ|uσ1 ⊗ · · · ⊗ uσk

where σ runs over the set of permutations of {1, . . . , k} and |σ| stands for its sig-
nature. We will also denote by |a| the degree of a, i.e., |a| = k if a ∈ ∧k

V . The
following relation is easy to prove:

u1 ∧ · · · ∧ uk = (−1)|σ|uσ1 ∧ · · · ∧ uσk
.

A basis of
∧k

V is given by the
(
n+1

k

)
elements of the form vi1 ∧ · · · ∧ vik

, 0 ≤ i1 <
· · · < ik ≤ n.

In the particular case k = n + 1 it turns out that
∧n+1

V is one-dimensional, so
any non-zero element of

∧n+1
V defines a basis, which permits to identify

∧n+1
V

with C. Such an element will be called a volume form. The other extreme case
corresponds to k = 0. By definition

⊗0
V =

∧0
V = C.

Given a ∈ ∧k
V and a′ ∈ ∧l

V , we define a ∧ a′ ∈ ∧k+l
V as follows. If a

and a′ are decomposable, i.e., a = u1 ∧ · · · ∧ uk and a′ = u′
1 ∧ · · · ∧ u′

l, then
a∧a′ = u1∧· · ·∧uk ∧u′

1 ∧· · · ∧u′
l, and this extends linearly to linear combinations

of decomposable elements. From this it readily follows that for any a ∈ ∧kV and
a′ ∈ ∧l

V we have

(2) a ∧ a′ = (−1)|a||a
′|a′ ∧ a.

2.5. Contractions in exterior products. Given r ≤ p, q, the iterated composi-
tion C[r] := (C1

1 )r restricts to an operator C[r] :
∧p

V ⊗∧q
V ∗ → ∧p−r

V ⊗∧q−r
V ∗.

In particular, using the expansion (1), it is not difficult to derive the formula

C[1](u1 ∧ . . . ∧ ur ⊗ α1 ∧ . . . ∧ αs) =
1
rs

∑
i,j

(−1)i+jαj(ui)(u1 ∧ . . . ∧ ûi ∧ . . . ∧ ur) ⊗ (α1 ∧ . . . ∧ α̂j ∧ . . . ∧ αs),

where the hat ˆ denotes the suppression of the element.
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Let us illustrate this with some examples. First consider u ∈ V and α ∧ β ∈∧2 V ∗. The contraction C[1](u ⊗ (α ∧ β)) is given by

C[1](u ⊗ (α ∧ β)) =
1
2
(α(u)β − β(u)α).

As a second example, we consider u ∧ v ∈ ∧2
V and α ∧ β ∈ ∧2

V ∗. A direct
computation produces

C[1]((u ∧ v) ⊗ (α ∧ β)) =
1
4
(α(u)v ⊗ β − β(u)v ⊗ α − α(v)u ⊗ β + β(v)u ⊗ α),

C[2]((u ∧ v) ⊗ (α ∧ β)) =
1
2
(α(u)β(v) − β(u)α(v)).

2.6. Dual of
∧p

V . We have the canonical identification(∧p
V

)∗
=

∧p
V ∗,

in which an element α1 ∧ · · · ∧ αp ∈ ∧p
V ∗ is interpreted as a linear mapping∧p V → C as follows:(

α1 ∧ · · · ∧ αp

)
(u1 ∧ · · · ∧ up) = C[p] ((u1 ∧ · · · ∧ up) ⊗ (α1 ∧ · · · ∧ αp))

=
1
p!

∑
σ

(−1)|σ|α1(uσ1) · · ·αp(uσp)

where σ runs over all the permutations of {1, . . . , p}. From this it follows that
{p! v∗i1 ∧ · · · ∧ v∗ip

: i1 < · · · < ip} is the dual basis of {vi1 ∧ · · · ∧ vip : i1 < · · · < ip}.
3. Exterior algebra and linear subspaces of Pn

3.1. Representations of linear subspaces as decomposable multivectors
and multicovectors. The Grassmannian G(k + 1, V ) is defined as the set of all
(k + 1)-dimensional subspaces of V . If V = Cn+1, it can be identified with the
k-dimensional subspaces of Pn. When we have in mind this second interpretation,
we will employ the notation G(k + 1,Cn+1) = G(k, n). Let W ⊂ V be a linear
subspace. Taking any basis of W , {w0, . . . , wk}, we can build the multivector
w0 ∧ · · · ∧ wk ∈ ∧k+1

V , which is uniquely defined by W up to a non-zero scalar
factor: in fact, if {w′

0, . . . , w
′
k} is another basis of W , we have that w′

0 ∧ · · · ∧w′
k =

det(M)w0 ∧ · · · ∧ wk where M is the matrix of the change of basis. Therefore the
class [w0 ∧ · · · ∧ wk] ∈ P (

∧k+1
V ) is uniquely determined by W . Conversely, given

a decomposable (k + 1)-vector a = u0 ∧ · · · ∧ uk 
= 0, we can recover the associated
vector space as the set of those vectors u such that u ∧ a = 0. This permits to
identify G(k + 1, V ) with the set of decomposable elements of P (

∧k+1
V ). This is

the generator-based representation of the vector subspace.
Given a subspace W ⊂ V of dimension k, we define its annihilator W ◦ ⊂ V ∗

as the set of those covectors α ∈ V ∗ vanishing on W . W ◦ is a vector subspace of
V ∗ of dimension n − k. Analogously, given a subspace Λ ⊂ V ∗, we can define its
annihilator Λ◦ as those vectors v ∈ V such that α(v) = 0 for any α ∈ Λ. This
defines a bijection between G(k + 1, V ) and G(n − k, V ∗). Consequently, we can
also represent the elements of the Grassmannian G(k + 1, V ) using decomposable
(n − k)-covectors of

∧n−kV ∗. This is the equation-based representation of the
subspace. We will see later that, in fact, there exists an isomorphism, defined up
to a scalar factor, between

∧k+1
V and

∧n−k
V ∗ corresponding to this bijection.

Special mention deserve the cases of multivectors and multicovectors of order 0
and n+1. The only element of P (

∧0
V ) = P (C) is the class [1], and the only element

of P (
∧n+1

V ∗) is the class [v0∧· · · ∧vn]. Both are interpreted as representatives of
the only element of G(0, V ), namely the 0-vector space which projectively represents
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the empty set. Analogously, the only elements of P (
∧n+1

V ) and of P (
∧0

V ∗)
represent the total space.

3.1.1. Example: A line of P2. The points (x0, y0, z0) and (x1, y1, z1) are represented
by vectors a = x0v0 + y0v1 + z0v2 and b = x1v0 + y1v1 + z1v2. The line ab is
represented by the bivector a ∧ b = (x0y1 − x1y0)v0 ∧ v1 + (y0z1 − y1z0)v1 ∧ v2 +
(z0x1−z1x0)v2∧v0. The points of the line are given by vectors c = xv0 +yv1 +zv2

such that (a∧ b)∧ c = D v0 ∧ v1 ∧ v2 = 0, where D is the determinant of the matrix
defined by the coefficients of the vectors a, b and c, so we recover the equation
of the line (x0y1 − x1y0)x − (y0z1 − y1z0)y + (z0x1 − z1x0)z = 0. The covector
α = (x0y1 − x1y0)v∗0 − (y0z1 − y1z0)v∗1 + (z0x1 − z1x0)v∗2 is the equation-based
representation of the line.

3.2. Switching between generators and equations of a linear subspace.
Let us consider a volume form V = v0 ∧ · · · ∧ vn ∈ ∧n+1

V which permits to
identify

∧n+1 V with C.
The wedge product

∧ :
p∧

V ×
n+1−p∧

V → C ≡
n+1∧

V

can be seen as a bilinear mapping which assigns to α ∈ ∧p V and β ∈ ∧n−p+1 V
the scalar 〈α, β〉 characterized by

α ∧ β = 〈α, β〉V.

This mapping permits to identify
∧p V with

∧n+1−p V ∗ by assigning to α ∈ ∧p V

the element Aα ∈ ∧n+1−p
V ∗ defined by

Aα :
n+1−p∧

V → C

β �→ Aα(β) = 〈α, β〉 .

In other words, the defining relation of A :
∧p

V → ∧n+1−p
V ∗ is

(3) α ∧ β = (Aα)(β)V.

Let us see how this mapping is expressed in terms of the basis of
∧p

V associated
to our basis of V . We introduce the following notation: If I = (i1, . . . , ik) is an
increasing sequence of different indexes, we define vI = vi1 ∧ · · · ∧ vik

. We also
define I ′ as the increasing complement of I in {0, . . . , n}. Then

(4) AvI = (−1)|I,I′|v∗I′

where (−1)|I,I′| is the signature of the permutation (I, I ′) of {1, . . . , n}. The proof
of this fact can be found in the Appendix.

It is worth to remark that A is defined up to a scalar multiple, since it depends
on the choice of the volume form. Therefore, it leads to an intrinsic isomorphism
between the associated projective spaces, P (

∧k+1
V ) and P (

∧n−k
V ∗). Note that if

a ∈ ∧k+1 V is a decomposable (k+1)-vector representing a linear subspace W , then
Aa ∈ ∧n−k V ∗ is the multicovector representing its annihilator W ◦. To see this, it
is enough to use an adapted basis {v0, . . . , vn} such that a ∼ v0 ∧ · · · ∧ vk so that
Aa = v∗k+1 ∧ · · · ∧ v∗n. Now W is given by the equations v∗k+1(v) = · · · = v∗n(v) = 0.
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3.2.1. Example: Changing representations in P3. Particularly important for our
purposes is the case of the three dimensional projective space, so let us suppose
dim V = 4. Then, the operator A associated to the volume form v0 ∧ v1 ∧ v2 ∧ v3

is given by the following table:

1 �→ v∗0 ∧ v∗1 ∧ v∗2 ∧ v∗3 v0 ∧ v1 �→v∗2 ∧ v∗3 v0 ∧ v1 ∧ v2 �→v∗3
v0 ∧ v2 �→ − v∗1 ∧ v∗3 v0 ∧ v1 ∧ v3 �→ − v∗2

v0 �→ v∗1 ∧ v∗2 ∧ v∗3 v0 ∧ v3 �→v∗1 ∧ v∗2 v0 ∧ v2 ∧ v3 �→v∗1
v1 �→ − v∗0 ∧ v∗2 ∧ v∗3 v1 ∧ v2 �→v∗0 ∧ v∗3 v1 ∧ v2 ∧ v3 �→ − v∗0
v2 �→ − v∗0 ∧ v∗1 ∧ v∗3 v1 ∧ v3 �→ − v∗0 ∧ v∗2
v3 �→ v∗0 ∧ v∗1 ∧ v∗2 v2 ∧ v3 �→v∗0 ∧ v∗1 v0 ∧ v1 ∧ v2 ∧ v3 �→1

3.3. Sum and intersection of linear subspaces. The sum and intersection of
linear subspaces are fundamental operations in Computer Vision. The most ex-
tended setting to perform these operations is given by the Grassmann-Cayley al-
gebra with its operators meet and join [2] [6]. This provides a nice double-algebra
structure which facilitates both geometric intuition and computations. However,
a drawback of this approach is that if a and b are representatives of subspaces A
and B, the meet operator gives a representative of A ∩ B only if A + B spans the
whole space. Analogously, the join operator fails to compute the sum of subspaces
unless their intersection is the null vector space. So, the meet operator fails when
we try to check whether a given point lies or not on a line in P3 or to compute
the intersection point of two coplanar lines, and the join operator fails to compute,
for example, the plane of two intersecting lines. Definitions of the meet and join
operators and their relationship with exterior algebra are given in the Appendix.

These considerations lead us to the necessity of providing a general procedure
to compute the intersection and sum of two arbitrary linear subspaces. The result
is given by the following Theorem.

Theorem 3.1. Let U and U ′ be two linear subspaces of V and let a ∈ ∧p
V

and a′ ∈ ∧p′
V be representatives of them. Let k be the highest integer such that

k ≤ min{p, n + 1 − p′} and the contraction C[k](a ⊗ Aa′) (which coincides with
±C[k](a′⊗Aa)) does not vanish. Then C[k](a⊗Aa′) = b⊗β where b is a multivector
representative of U ∩ U ′ and β is a multicovector representative of U + U ′.

Proof. Let us take a basis of V , {vi} adapted to U and U ′ in the sense that U is
represented by vI ∧ vJ and U ′ is represented by vJ ∧ vK , being the multi-indexes
I, J and K pairwise disjoint. Note that U ∩ U ′ is represented by vJ and U + U ′ is
represented by vI ∧ vJ ∧ vK . Then A(vJ ∧ vK) = ±v∗I ∧ v∗L, where L is the multi-
index representing the remaining indexes not in I, J and K. Then k is the length
of I, and C[k](vI ∧ vJ ⊗ A(vJ ∧ vK)) = ±vJ ⊗ v∗L, so b = vJ represents U ∩ U ′ and
v∗L = ±A(vI ∧ vJ ∧ vK) represents the equations of the sum U + U ′. An analogous
computation proves that C[k](a ⊗ Aa′) = ±C[k](a′ ⊗ Aa). �

This Theorem has an immediate application to the case of linear projective
subspaces. Let us illustrate the result with some examples.

3.3.1. A point on a line of P3. A line in P3 through the points represented by
vectors a = a0v0 +a1v1 +a2v2 +a3v3 and b = b0v0+b1v1 +b2v2 +b3v3 is represented
by the bivector

a ∧ b =(a0b1 − b0a1)v0 ∧ v1 + (a0b2 − b0a2)v0 ∧ v2 + (a0b3 − b0a3)v0 ∧ v3+

(a1b2 − b1a2)v1 ∧ v2 + (a2b3 − b2a3)v2 ∧ v3 + (a3b0 − b3a0)v3 ∧ v1.
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Table 1. Representation of linear subspaces of P3.

∅ P (
∧0V ) = [1] P (

∧4V ∗) = [v∗0 ∧ v∗1 ∧ v∗2 ∧ v∗3 ]
Points P (

∧1
V ) = P3 P (

∧3
V ∗)

Lines G(1, 3) ⊂ P (
∧2

V ) G(1, 3) ⊂ P (
∧2

V ∗)
Planes P (

∧3
V ) P (

∧1
V ∗) = P3∗

P3 P (
∧4

V ) = [v0 ∧ v1 ∧ v2 ∧ v3] P (
∧0

V ∗) = [1]

The equation-based representation is given by

A(a ∧ b) =(a0b1 − b0a1)v∗2 ∧ v∗3 − (a0b2 − b0a2)v∗1 ∧ v∗3 + (a0b3 − b0a3)v∗1 ∧ v∗2+

(a1b2 − b1a2)v∗0 ∧ v∗3 + (a2b3 − b2a3)v∗0 ∧ v∗1 + (a3b0 − b3a0)v∗0 ∧ v∗2 .

A vector x = x0v0+x1v1+x2v2+x3v3 belong to the line ab iff C[1](x⊗A(a∧b)) = 0
or, equivalently, iff a ∧ b ∧ x = 0. Any of these methods leads us to the equations

(−a3b4 + a4b3)x2 + (a2b4 − a4b2)x3 + (−a2b3 + a3b2)x4 = 0

(a3b4 − a4b3)x1 + (−a1b4 + a4b1)x3 + (a1b3 − a3b1)x4 = 0

(−a2b4 + a4b2)x1 + (a1b4 − a4b1)x2 + (−a1b2 + a2b1)x4 = 0

(a2b3 − a3b2)x1 + (−a1b3 + a3b1)x2 + (a1b2 − a2b1)x3 = 0.

Note that these are the equations of the four planes passing through the points a
and b and through the vertices of the coordinate tetrahedron. Generically, any two
of them define the line ab.

For the reader’s convenience we have summarized in Table 1 the correspondence
between linear subspaces and multivectors or multicovectors of P3.

3.3.2. Relative positions of two lines in P3. Let r and r′ be two lines given respec-
tively by bivectors a = u∧v and a′ = u′∧v′. There are three different possibilities:

(1) C[1](a⊗Aa′) = 0. Since C[0] is the identity mapping, C[0](a⊗Aa′) = a⊗Aa′,
therefore both lines are coincident.

(2) If u⊗α = C[1](a⊗Aa′) 
= 0 and C[2](a⊗Aa′) = 0, the both lines intersect
at the point represented by u and are contained in the plane given by the
covector α.

(3) If C[1](a⊗Aa′) 
= 0 and C[2](a⊗Aa′) 
= 0 then necessarily C[2](a⊗Aa′) ∼
1 ⊗ 1, so the intersection is empty and the sum is the total space.

3.3.3. Two intersecting lines in P3. We consider the lines in P3 of equations r1 :
x1 = x2 + x3 = 0 and r2 : x0 + x2 = x0 − x3 = 0. First, we find representatives of
these lines in

∧2 V ∗, which is immediate from their equations: α1 = v∗1 ∧ (v∗2 + v∗3)
and α2 = (v∗0 + v∗2) ∧ (v∗0 − v∗3). Then we apply A−1 to one of them, say α1, using
for instance the table in 3.2.1, obtaining a = A−1(α1) = v0 ∧ v3 − v0 ∧ v2. Then we
compute

C[1](a ⊗ α2) =
1
4
(−v3 ⊗ v∗3 − v3 ⊗ v∗2 − v0 ⊗ v∗2 + v2 ⊗ v∗3 + v2 ⊗ v∗2 − v0 ⊗ v∗3)

= −1
4
(v0 − v2 + v3) ⊗ (v∗2 + v∗3),

which is non-zero. We also have that C[2](a1 ⊗α2) = 0. Consequently the intersec-
tion of r1 and r2 is represented by the vector v0 − v2 + v3, which corresponds to the
point (1, 0,−1, 1), and the plane containing both lines has equation x2 + x3 = 0.

Note that once computed C[1](a⊗α2), to factorize the result in the form b⊗β is
just a matter of collecting the factors that multiply each basis element v∗I , which can
be done contracting the result with 1

p!vI , where p is the order of the multicovector.
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3.3.4. Intersection of a line and a plane in P3. To compute the intersection of the
line r1 : x1 = x2 + x3 = 0 and the plane x0 − x3 = 0 we take the representative of
the line a = v0 ∧ v3 − v0 ∧ v2 ∈ ∧2

V computed above and the representative of the
plane β = v∗0 − v∗3 . The contraction

C[1](a ⊗ β) = −1
2
(−v3 + v4)

represents the intersection point (0, 0,−1, 1) and since − 1
2 (−v3 + v4) = − 1

2 (−v3 +
v4) ⊗ 1 we obtain that their sum is represented by 1 ∈ ∧0 V ∗ = C, i.e., it is the
total space P3.

3.3.5. Two non-intersecting lines in P3. We now consider the lines in P3 of equa-
tions r1 : x1 = x2 + x3 = 0 and r2 : x0 + x2 = x1 − x3 = 0. Analogously to
the previous examples, we take the previously computed representative a of r1 and
β = (v∗0 + v∗2) ∧ (v∗1 − v∗3) of r2. We compute

C[1](a ⊗ β) =
1
4
(−v0 ⊗ v∗0 + v0 ⊗ v∗1 − v0 ⊗ v∗2 − v0 ⊗ v∗3

− v2 ⊗ v∗1 + v2 ⊗ v∗3 + v3 ⊗ v∗1 − v3 ⊗ v∗3)

C[2](a ⊗ β) = −1
2

= −1
2
1 ⊗ 1,

so we conclude that the intersection is empty, since it is represented by 1 ∈ ∧0
V

and their sum is the total space P3, since it is represented by 1 ∈ ∧0 V ∗.

4. Geometry of lines in P3

4.1. The Klein quadric. Only decomposable bivectors, i.e., those of the form
a = u ∧ v represent lines. Clearly we have in this case that a ∧ a = 0, so this is a
necessary condition to be decomposable which turns out to be sufficient according
to the following Theorem.

Theorem 4.1. Let a ∈ ∧2
V , a 
= 0. Then a is decomposable if and only if a∧a = 0.

The proof of this Theorem can be found in the Appendix.

4.1.1. Example. The bivector α = v0∧v1+v0∧v3−v1∧v3+v2∧v1+v2∧v3 satisfies
α ∧ α = 0, and the reader can readily verify that α = (v0 − v1 + v2) ∧ (v1 + v3).

Let us write the condition a ∧ a = 0 in the case V = C4. Given

a =
∑

0≤i<j≤4

aij vi ∧ vj ∈
∧2

V,

we have that

a ∧ a = 2(a01a23 − a02a13 + a03a12) v0 ∧ v1 ∧ v2 ∧ v3.

Therefore the necessary and sufficient condition for a two-vector to be decomposable
is that a01a23−a02a13+a03a12 = 0, which is a non-degenerated quadratic expression
in the six variables aij , 0 ≤ i < j ≤ 4. So, passing to projective spaces, we obtain
the following result:

Theorem 4.2. The set of lines of P3, G(1, 3), can be identified with a non-
degenerated quadric Ω ⊂ P (

∧2
V ). This quadric is called the Klein quadric and

has equation a ∧ a = 0.

We have an analogous representation of G(1, 3) as the quadric given by those
α ∈ ∧2

V ∗ such that α ∧ α = 0. The six numbers aij , 0 ≤ i < j ≤ 4 are known as
the Plücker coordinates of the line represented by the corresponding bivector.
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4.2. Matrix expression of the Klein quadric. Let us list the three algebraic
equivalent objects from which the Klein quadric can be defined. We recall that a
quadric can be equivalently seen as a quadric form, a symmetric bilinear form, and
a symmetric mapping between a vector space and its dual (see 8.2 in the Appendix).
As usual, we take a volume form V = v0 ∧v1 ∧v2 ∧v3 so we can identify

∧4
V ≡ C.

(1) The quadratic form is given by Ω(a) = a ∧ a for any bivector a ∈ ∧2V .
(2) The bilinear form is given by Ω(a, b) = a∧b. This form of the Klein quadric

is particularly interesting, since given decomposable bivectors a, b ∈ ∧2V ,
a ∧ b = 0 if and only the lines they represent intersect. To see this it is
enough to note that if α ∧ β = A(a ∧ b), we have that

a ∧ b = 0 ⇐⇒ (by definition of A, see formula (3))

(Aa)(b) = 0 ⇐⇒ (by formula in subsection 2.6)

C[2](b ⊗ Aa) = 0 ⇐⇒ The two lines intersect (due to Theorem 3.1.

See also example 3.3.2).

(3) To define the polar form Ω :
∧2

V → ∧2
V ∗ it is enough to know how Ω(a)

acts on
∧2

V = (
∧2

V ∗)∗. The rule is that Ω(a)(b) = Ω(a, b) = a ∧ b, but
this is just the definition of the operator A defined in section (3.2), so Ω
coincides with the operator A :

∧2
V → ∧2

V ∗.
If we take the basis

(5) B�2V = {v0 ∧ v1, v0 ∧ v2, v0 ∧ v3, v1 ∧ v2, v3 ∧ v1, v2 ∧ v3}
of

∧2
V and its dual basis

(6) B�2V ∗ = 2{v∗0 ∧ v∗1 , v∗0 ∧ v∗2 , v∗0 ∧ v∗3 , v∗1 ∧ v∗2 , v∗3 ∧ v∗1 , v∗2 ∧ v∗3},
we see, according to Example 3.2.1 that the matrix of the Klein quadric is

MA =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

From now on we will refer only to this basis when we talk about the matrix of the
Klein quadric.

Interpreting a column 6-vector r as the coordinates of a bivector ar with re-
spect to the basis B�2V , we can compute the coordinates of the bicovector A(ar)
with respect to the basis B�2V ∗ as the column vector MA r. To check that ar is
decomposable, one must verify that rT MA r = 0, and to test if the line given by
r intersects r′, one must check that r′T MA r = 0. Similar computations can be
carried out with covectors.

4.3. Interpretation of the tangent hyperplanes to the Klein quadric. The
decomposable bivectors on the tangent hyperplane at a point of the Klein quadric
have the following interesting interpretation:

Theorem 4.3. Given a decomposable bivector a ∈ ∧2
V representing a line r, the

set of lines intersecting r is given by the intersection of the tangent hyperplane to
the Klein quadric at [a] ∈ P (

∧2
V ) with the Klein quadric itself.

Proof. Let a = u∧ v represent a point of the Klein quadric. From the definition of
this quadric and subsection 8.2, we have that the points of the tangent hyperplane
at a are those bivectors a′ such that a ∧ a′ = 0. The bivector a′ represents a
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point of the Klein quadric if and only if it is decomposable, i.e., a′ = u′ ∧ v′. But
a ∧ a′ = u ∧ v ∧ u′ ∧ v′ = 0 if and only if the vectors u, v, u′ and v′ are linearly
dependent, and this happens if and only if the two lines represented by a and a′

intersect. �

4.3.1. Example. Let us consider the line r determined by the vectors u = v0 +2v1+
v3 and v = v1 + 3v2. The tangent hyperplane to the Klein quadric at u∧ v is given
by those bivectors a′ such that u ∧ v ∧ a′ = 0 (see Appendix 8.2). If

a′ = x01v0 ∧ v1 + x02v0 ∧ v2 + x03v0 ∧ v3 + x12v1 ∧ v2 + x13v1 ∧ v3 + x23v2 ∧ v3,

then u ∧ v ∧ a′ = 0 is equivalent to

x23 − 3x13 + 6x03 + x02 − 3x01 = 0.

Therefore the bivectors representing lines that intersect r are those verifying the
equation above together with a′ ∧ a′ = 0, i.e.,

x01x23 − x02x13 + x03x12 = 0.

4.4. Linear subspaces of the Klein quadric. There are only four kinds of linear
subspaces of the Klein quadric: points, lines and α and β-planes. A point of the
Klein quadric corresponds, as we have seen, with a line of P3. The lines of P3

passing through a fixed point represented by some a ∈ V , which is called vertex,
are represented by the bivectors of the form a ∧ b, and these bivectors represent a
plane of P5 contained in the Klein quadric, which is called an α-plane. Besides, the
lines contained in a given plane of P3 are linear combinations of three bivectors a∧b,
b∧c and c∧a, which represents three coplanar lines of P3. These linear combinations
give a plane of the Klein quadric which is called a β-plane. Finally, the lines of
the Klein quadric represent pencils of lines of P3, i.e., sets of lines passing through
a point and contained simultaneously in a plane. They are therefore intersections
of an α-plane with a β-plane when this intersection is non-empty, i.e., when the
vertex of the α-plane lies on the base plane of the β-plane. These exhaust all the
linear subspaces of the Klein quadric (see [8, Chapter 22]).

5. The Absolute Line Quadric

Let us denote by Q the dual absolute quadric (DAQ) [20] [9], which is given by
the planes of P3 which are tangent to the absolute conic, including the plane at
infinity itself. Since Q ⊂ P3∗, we can see it as a mapping Q : V ∗ → V (see 8.2)
which, geometrically, is interpreted as the mapping sending to each plane of P3,
different of the plane at infinity, a vector orthogonal to it. The quadric Q happens
to be of rank three and its kernel as a mapping is the plane at infinity itself. It is
well known that the Euclidean structure of the space can be recovered from, and in
fact is equivalent to, the knowledge of Q. We will call a basis of V , {v0, v1, v2, v3}
Euclidean when it is adapted to Q in the sense that Q(v∗i ) = vi, i = 0, 1, 2 and
Q(v∗3) = 0. Note that the plane at infinity is represented by the covector v∗3 or by
the three-vector v0 ∧ v1 ∧ v2.

The DAQ extends to a linear mapping Q̃ :
∧2

V ∗ → ∧2
V defined by

(7) Q̃(α ∧ β) = (Qα) ∧ (Qβ).

This is a well-defined linear mapping as an immediate consequence of the universal
property of exterior algebra (see 8.3 in the Appendix). The geometrical interpre-
tation of this mapping is the following: If α ∧ β is the bicovector representing a
line r of P3, the bivector (Qα) ∧ (Qβ) represents the line at infinity including all
the directions orthogonal to r (since both Qα and Qβ are orthogonal directions
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Q(β)

l⊥

Q(α) β
α

l

π∞

Figure 1. Obtaining the line of orthogonal directions to a line in P3.

to r). The mapping Q̃ will be called the absolute line quadric (ALQ). Note that
definition (7) can be abbreviated as

(8) Q̃ = Q ∧ Q,

so the ALQ is the wedge product of the DAQ with itself.
There are three properties of Q̃ that we want to remark:
(1) Q̃ is a rank-three quadric. To see this, let us take any Euclidean basis

of V , {vi}. The quadric Q̃ maps v∗0 ∧ v∗1 �→ v0 ∧ v1, v∗0 ∧ v∗2 �→ v0 ∧ v2,
v∗1 ∧ v∗2 �→ v1 ∧ v2 and any other basic bicovector is mapped to the null
vector.

(2) Let us consider the polarity Ω :
∧2V → ∧2V ∗ associated to the Klein

quadric, which is an isomorphism since Ω is a full-rank quadric. The com-
posite mapping Q̃ΩQ̃ must vanish. To see this, note that ΩQ̃(α ∧ β) is a
bicovector representing a line in the plane at infinity, so it belongs to the
kernel of Q̃.

(3) The quadratic form associated to Q̃ is given by the mapping Q̃ :
∧2

V ∗ → C,
defined by

Q̃(α ∧ β) := (α ∧ β)
(
Q(α) ∧ Q(β)

)
.

The zeroes of this quadric are those lines intersecting their own line of
orthogonal directions and, therefore, they are those that intersect the ab-
solute conic. To see this, remember that a decomposable bivector produces
a zero when it acts on a decomposable bicovector if and only if the two
lines they represent intersect (see subsection 4).

(4) Since Q̃ :
∧2V ∗ → ∧2V is a rank-three mapping and its image is contained

in the plane at infinity, it must coincide with it. Therefore this image is a
β-plane.

5.1. Characterization of the quadrics Q̃. The following theorem characterizes
the possible ALQs, in the sense that it describes the quadrics of P (

∧2V ∗) that are
induced by rank-three quadrics of V ∗. They happen to be exactly those that satisfy
property (4) above.
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Theorem 5.1. A symmetric linear mapping Q̃ :
∧2

V ∗ → ∧2
V is induced by a

rank-three symmetric linear mapping Q : V ∗ → V , in the sense that Q̃(α ∧ β) =
Q(α)∧Q(β) for any α, β ∈ ∧2V ∗, if and only if P (Q̃(

∧2V ∗)) is a β-plane. In this
case, Q is uniquely given up to a sign.

From a practical point of view, the following equivalent characterization can be
more useful.

Theorem 5.2. A symmetric linear mapping Q̃ :
∧2

V ∗ → ∧2
V stems from a

rank-three symmetric linear mapping Q : V ∗ → V if and only if the following three
conditions hold true:

(1) The composite mapping

∧2V ∗ Q̃ �� ∧2V
Ω �� ∧2V ∗ Q̃ �� ∧2V

vanishes.
(2) The rank of Q̃ is three.
(3) The image of Q̃ is not an α-plane (conditions (1) and (2) above imply that

P (Q̃(
∧2V ∗)) is either an α-plane or a β-plane).

Proofs of these theorems can be found in the Appendix.

Remark 5.1. From a practical point of view it is important to observe that condition
(1) in Theorem 5.2 implies that the rank of Q̃ is at most three. To see this, just
check that Q̃ΩQ̃ = 0 implies

im ΩQ̃ ⊂ ker Q̃ ⇒
dim im ΩQ̃ ≤ dim ker Q̃ ⇒ (Since Ω is an isomorphism)

rank Q̃ ≤ 6 − rank Q̃ ⇒
rank Q̃ ≤ 3.

5.2. Linear computation of the ALQ. In some applications it is possible to
know a number of lines {ri}N

i=1 belonging to the ALQ and enough to determine it
(see Section 6). One might hope to recover the ALQ obtaining the coefficients of
its matrix by solving the linear system

Q̃(ri, ri) = 0, i = 1, . . . , N.

However, since also Ω(ri, ri) = 0 (Theorem 4.1), the result will include all the
quadrics of the form αQ̃ + βΩ−1. This set of quadrics has been studied in [21]
under the name of calibration pencil. In [21] it is also shown that they constitute
all the possible solutions of the system. To obtain Q̃ from this pencil linearly we
can use the following fact, whose proof can be found in the Appendix.

Theorem 5.3. Let V be a four dimensional vector space and let F : V ∗ → V be a
linear symmetric mapping (i.e., a quadric). Let F̃ :

∧2
V ∗ → ∧2

V be the associated
linear symmetric mapping defined by F̃ (α∧β) = F (α)∧F (β). Let Ω :

∧2
V → ∧2

V ∗

be the Klein quadric. Then, the trace of the composition ΩF̃ :
∧2

V ∗ → ∧2
V ∗ is

zero.
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If F is given by a matrix (fij), the matrix of 2F̃ with respect to the bases given
by (5) and (6) will be⎛
⎜⎜⎜⎜⎜⎝

f00f11 − f01
2 f12f00 − f02f01 f00f13 − f01f03 f01f12 − f11f02 f11f03 − f01f13 f02f13 − f12f03

f12f00 − f02f01 f22f00 − f02
2 f00f23 − f02f03 f22f01 − f12f02 f12f03 − f01f23 f02f23 − f22f03

f00f13 − f01f03 f00f23 − f02f03 f00f33 − f03
2 f01f23 − f02f13 f03f13 − f01f33 f02f33 − f23f03

f01f12 − f11f02 f22f01 − f12f02 f01f23 − f02f13 f11f22 − f12
2 f13f12 − f23f11 f12f23 − f22f13

f11f03 − f01f13 f12f03 − f01f23 f03f13 − f01f33 f13f12 − f23f11 f33f11 − f13
2 f23f13 − f33f12

f02f13 − f12f03 f02f23 − f22f03 f02f33 − f23f03 f12f23 − f22f13 f23f13 − f33f12 f22f33 − f23
2

⎞
⎟⎟⎟⎟⎟⎠

and it is straightforward to check that traceΩF̃ , which is just the sum of the
elements of the main antidiagonal of the matrix above, is zero.

We can therefore recover Q̃ from any linear combination α Q̃+β Ω−1 noting that
β can be recovered as follows:

trace (Ω(α Q̃ + β Ω−1)) = trace (α ΩQ̃ + β Id) = 4β.

5.3. Recovering the DAQ from the ALQ. Algorithms to compute the ALQ
from a projective calibration will be presented below. Here we will see how the
DAQ can be recovered from the ALQ.

Suppose that Q̃ :
∧2

V ∗ → ∧2
V is an ALQ, i.e., according to Theorem 5.1, it is a

rank-three symmetric mapping such that its image is a β-plane, and let π ∈ V ∗ be
a representative of this plane. One can recover the value of Q on a covector α ∈ V ∗

not a multiple of π as follows: Take two auxiliary covectors β and γ also not multiple
of π and such that α, β and γ are linearly independent. The bicovectors α ∧ β and
α∧γ are representatives of two different lines of the plane represented by α, and the
images Q̃(α∧β) = Q(α)∧Q(β), Q̃(α∧γ) = Q(α)∧Q(γ) ∈ ∧2

V intersect at a point
which must be a representative of Q(α). This intersection can be found, according
to Theorem 3.1, computing the contraction C[1](Q̃(α∧β)⊗A(Q̃(α∧ γ)) ∈ V ⊗V ∗,
which must be a multiple of Q(α) ⊗ π. The Lemma 5.4, proved in the Appendix,
specifies this multiplicity factor.

Lemma 5.4. Let us consider a basis {v0, . . . , v3} of V , and let u0, u1 and u2 be
three linearly independent vectors of V . We have

C[1]((u0 ∧ u1) ⊗ A(u0 ∧ u2)) =
1
4
u0 ⊗ α

where α is the covector

α =
3∑

i=0

(−1)i+1Miv
∗
i ,

and Mi is the determinant of the 3× 3 matrix obtained by suppressing the i-th row
of the matrix (u0 u1 u2) given by the coordinates of the vectors ui in the given basis.

5.3.1. Example. Let us consider the vectors u0 = 2v0−v1 +v2 +3v3, u1 = 3v1 +3v3

and u2 = −v0 + v1 + 4v2 + 3v3. If we are given the bivectors

u0 ∧ u1 = 6v0 ∧ v1 + 2v0 ∧ v3 − 3v1 ∧ v2 − 10v1 ∧ v3 + v2 ∧ v3

u0 ∧ u2 = v0 ∧ v1 + 9v0 ∧ v2 + 9v0 ∧ v3 − 5v1 ∧ v2 − 6v1 ∧ v3 − 9v2 ∧ v3.

let us see how we can recover multiples of u0 and α. We have that

A(u0 ∧ u2) = −9v0 ∧ v1 + 6v0 ∧ v2 − 5v0 ∧ v3 + 9v1 ∧ v2 − 9v1 ∧ v3 + v2 ∧ v3,

and

C[1]((u0 ∧ u1) ⊗ A(u0 ∧ u2)) =
1
4

4∑
i,j=0

aijvi ⊗ v∗j ,
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where the matrix (aij) are entries of the matrix

Λ =

⎛
⎜⎜⎜⎜⎝

−64 −18 −52 54

32 9 26 −27

−32 −9 −26 27

−96 −27 −78 81

⎞
⎟⎟⎟⎟⎠ .

Knowing that C[1]((u0 ∧ u1) ⊗ A(u0 ∧ u2)) = 1
4u0 ⊗ α, we have aij = (u0)iαj , i.e.

Λ =

⎛
⎜⎜⎝

(u0)0
(u0)1
(u0)2
(u0)3

⎞
⎟⎟⎠ (

α0 α1 α2 α3

)
.

Therefore we can take any (non-zero) row of Λ as a multiple of α and any column
as a multiple of u0. Adjusting constants, we can even recover u′

0 = λu0 and
α′ = λ−1α. In our case we can take, for example, α′ = −64v∗0 − 18v∗1 − 52v∗2 +54v∗3
and u′

0 = (1/2)u0. The covector α provided by the lemma is given by α′/2.

Lemma 5.4 provides a technique for the recovery of the rank-three Q : V ∗ → V

(up to a sign) from its corresponding rank-three symmetric Q̃ :
∧2

V ∗ → ∧2
V .

The problem is equivalent to that of finding the vectors wi = Q(v∗i ) from the data
Q̃(v∗j ∧ v∗k) = Q(v∗j ) ∧ Q(v∗k) = wj ∧ wk. If we select three indexes, say 0, 1 and 2,
we can compute

C[1]((w0 ∧ w1) ⊗ A(w0 ∧ w2)) =
1
4
w0 ⊗ α0

C[1]((w1 ∧ w2) ⊗ A(w1 ∧ w0)) =
1
4
w1 ⊗ α1

C[1]((w2 ∧ w0) ⊗ A(w2 ∧ w1)) =
1
4
w2 ⊗ α2

(9)

and then note that α0 = α1 = α2 since we are cycling the vectors w0, w1 and w2

and thus the columns of the matrices Mi of Lemma 5.4, so they remain invariant.
If the vectors w0, w1 and w2 are linearly dependent, then α will be zero. In this
case a new set of indexes must be employed. Since Q is rank-three, at least one of
the four possible selection of indexes will correspond to three linearly independent
vectors, so that we will eventually come up with a non-zero α. Let us assume that
this is the case for the indexes 0, 1 and 2.

We can now find the coordinates of each vector wi, i = 0, 1, 2, as follows: If
wi =

∑3
j=0 wijvj , we have that wi ⊗ α =

∑3
j,k=0 wijαkvj ⊗ v∗k. Then, since there

must be at least one αk 
= 0, we have recovered the three vectors wi, i = 0, 1, 2,
up to a common non-zero scale factor αk, using the method of example 5.3.1.This
provides three columns of the matrix of αkQ, and, since this matrix is symmetric,
this only leaves one unknown coefficient of it, which can be obtained from the
null-determinant condition. The feasibility of this last computation is ensured by
Lemma 8.1 in the Appendix.

If one is interested in the obtainment of Q with the exact scale factor, this can
be done up to a sign from the relation α̃kQ = α2

kQ̃, which follows from the very
definition of Q̃.

5.3.2. Dealing with noise. Note that in the noisy case, the contractions in equa-
tions (9) do not lead to decomposable tensors, i.e., elements of the form a ⊗ α ∈
V ⊗ V ∗. Even if we approximate individually each tensor by a decomposable one,
there is no guarantee that we will obtain the same covector α. However, one can
proceed as follows. Express each of the three tensors given by the left hand sides
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of equations (9) as a 4 × 4 matrix Ai, i = 0, 1, 2, and compute a singular value
decomposition (SVD) ⎛

⎝A0

A1

A2

⎞
⎠ = U12×4D4×4V

T
4×4,

where D is a diagonal matrix D = diag(d1, d2, d3, d4) and d1 ≥ d2 ≥ d3 ≥ d4 ≥ 0.
Approximating D by diag(d1, 0, 0, 0) we obtain a decomposition⎛

⎝A0

A1

A2

⎞
⎠ ≈

⎛
⎝w0

w1

w2

⎞
⎠αT

where the first factor is a 12×1 matrix corresponding to the vectors wi given by the
first column of the matrix U and the second factor is a 1× 4 matrix corresponding
to the coordinates of the covector α and is given by the first row of matrix d1V

T .

5.4. Direct recovery of Euclidean coordinates from Q̃. The following the-
orem provides another way to recover the Euclidean structure of space from the
ALQ. Now we see how to obtain directly the matrix of a coordinate change be-
tween a Euclidean reference and the projective reference employed. An equivalent
result, from a different perspective, appeared in [15]. The proof that is provided in
the Appendix is, up to the authors’ knowledge, the first that can be found in the
literature.

Theorem 5.5. Let MQ̃ denote the matrix of the ALQ in terms of bases defined as
in (5) and (6). If R is a 3 × 6 matrix such that MQ̃ = RT R, then the rows of R

are the coordinates with respect to the basis given in equation (5) of the bivectors
w0 ∧ w1, w1 ∧ w2, w2 ∧ w0 where the vectors wi are such that if w3 is any other
4-vector linearly independent with them, then (w0 w1 w2 w3) is the matrix of a
change of coordinates from a Euclidean coordinate system.

From the proof a geometrical interpretation of the matrices R and RT follows.
The matrix R is the matrix of the mapping

∧2 V ∗ Q̃ �� im Q̃ .

with respect to the basis B�2V ∗ = 2{v∗0 ∧v∗1 , v∗0 ∧v∗2 , v∗0 ∧v∗3 , v∗1 ∧v∗2 , v∗3 ∧v∗1 , v∗2 ∧v∗3}
associated with any basis of V and the basis B = {u0 ∧ u1, u1 ∧ u2, u2 ∧ u0} of
im Q̃ where {u0, u1, u2, u3} is an Euclidean basis of V . Note that im Q̃ is the vector
space associated to the β-plane corresponding to the lines of the plane at infinity.
2RT is the matrix of the inclusion

im Q̃
� � i �� ∧2 V

with respect to the above-mentioned bases of im Q̃ and
∧2

V .
We can obtain such a factorization from a singular value decomposition MQ̃ =

UDU t:

MQ̃ = UDU t =
(

A C
B D

) (
∆ 0
0 0

) (
At Bt

Ct Dt

)

=
(

A
√

∆
B
√

∆

) (√
∆At

√
∆Bt

)
= RRt,

where ∆ is a diagonal 3× 3 matrix and R is a rank-three 6× 3 matrix. To recover
the vectors wi from the rows of R one can employ the procedure explained in
subsection 5.3.
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6. Applications to camera autocalibration

6.1. Camera model and motivation of the autocalibration technique. The
above developed theory has an immediate application to camera autocalibration.
We assume that cameras are modeled [9] by the equation q ∼ PQ , where Q =
(x, y, z, t)T denotes the Euclidean homogeneous coordinates of a spatial point, q =
(u, v, w)T denotes the homogeneous coordinates of an image point, and P is the
3 × 4 matrix P = K(R | − Rt). The intrinsic parameter matrix K is given by

(10) K =

⎛
⎝αu −αu cot θ u0

0 αv/ sin θ v0

0 0 1

⎞
⎠ ,

where u0 and v0 are the affine coordinates of the principal point, αu and αv are the
pixel scale factors and θ is the skew angle between the axes of the pixel coordinates.
We denote by τ = αu/αv the pixel aspect ratio. The matrix R is a rotation matrix
which gives the camera orientation, and t are the coordinates of the camera center.

We recall here [9] that it is possible to obtain a projective calibration only from
image point correspondences. This means that, given a set of projected points qij

obtained with N cameras, N ≥ 2, we can obtain a set of matrices P̂i and a set of
point coordinates Q̂j such that qij ∼ P̂iQ̂j, where P̂i = PiH

−1 and Q̂j = HQj for
some non-singular 4 × 4 matrix H .

Euclidean calibration can be defined as the obtainment of a matrix H changing
the projective coordinates of a given projective calibration to some Euclidean co-
ordinate system, i.e., one in which the absolute conic has equations x2 + y2 + z2 =
t = 0.

If the camera aspect ratio τ and skew θ are known, the affine coordinate trans-
formation in the image given by the matrix

Kc =

⎛
⎝1 τ cos θ 0

0 τ sin θ 0
0 0 1

⎞
⎠

transforms the internal parameters matrix into

(11) K ′ = KcK =

⎛
⎝α′ 0 u′

0

0 α′ v′0
0 0 1

⎞
⎠ ,

where α′ = αu, u′
0 = u0 + τ cos θv0 and v′0 = τ sin θv0. The matrix K ′ corresponds

to the internal parameters matrix of a camera with square pixels. Therefore, if
the pixel shape is known, we can always apply this transformation, solve the au-
tocalibration problem for the case of square pixel cameras and finally apply the
inverse transformation K−1

c to the estimated K ′ matrices. Therefore, without loss
of generality, we will assume that we are dealing with square pixel cameras.

We can now introduce the geometric motivation of our method. The basic obser-
vation on which it is based is that the retroprojected lines of image points (1,±i, 0)T

intersect the absolute conic, and therefore belong to the ALQ. To check this, note
that if Q = (x, y, z, 0)T are the coordinates of the intersection of one of these two
lines with the plane at infinity t = 0, we have that

(1,±i, 0)T ∼ PQ = KR(x, y, z)T , so

(x, y, z)T ∼ RT K−1(1,±i, 0)T , and then

x2 + y2 + z2 = (x, y, z)(x, y, z)T = 0.
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If the aspect ratio is unknown but the skew is zero, an analogous computation
shows that the lines obtained by back-projecting points (1, 0, 0) and (0, 1, 0) of each
camera are orthogonal.

In any of these situations the use of the ALQ will permit to upgrade the projective
calibration to an Euclidean calibration with linear algorithms. But first we need
the following result (whose Grassmann-Cayley algebra version can be found in [6,
p. 183]) in order to compute backprojections of image points.

Theorem 6.1. Let P be a projection matrix with rows v∗i ∈ V ∗, i = 0, 1, 2. Then
the back-projected line of a given image point (x0, x1, x2) is represented by the bi-
covector

α = x0v
∗
1 ∧ v∗2 + x1v

∗
2 ∧ v∗0 + x2v

∗
0 ∧ v∗1 .

Proof. Let v∗3 ∈ V ∗ be such that {v∗i }3
i=0 is a basis of V ∗, and let {vi}3

i=0 be the
associated predual basis of V . We compute a bivector representing the same line
by applying the A−1 operator according to the table in example 3.2.1, obtaining

A−1(α) = x0v0 ∧ v3 + x1v1 ∧ v3 + x2v2 ∧ v3 = (x0v0 + x1v1 + x2v2) ∧ v3.

Thus this is the line defined by points x0v0 + x1v1 + x2v2 and v3. The first one
is a space point that projects onto image point (x0, x1, x2) (to check it, just apply
the projection equation and the definition of dual basis). The second is the camera
center, since, again by the definition of dual basis, it belongs to the three planes
represented by the covectors v∗i , i = 0, 1, 2. �
6.2. Linear algorithms. Now we propose a linear method for finding the Euclid-
ean structure of space from a set of N ≥ 10 cameras with known skew and aspect
ratio and varying focal length and principal point, based on the preceding analysis.
We assume that a projective calibration has already been computed.

(1) Use the knowledge of the skew angle and aspect ratio of each camera to
change the retinal coordinates so that the intrinsic parameter matrices have
the form (11).

(2) Back-project the points (1,±i, 0) computing the bicovectors representing
the corresponding lines rk, r̄k, as indicated in Theorem 6.1.

(3) Obtain the quadric Q̃ by solving the linear homogeneous system⎧⎨
⎩

Q̃(rk, rk) = 0
Q̃(r̄k, r̄k) = 0, k = 1, . . . , N

trace(ΩQ̃) = 0

Note that Q̃, as a symmetric 6×6 matrix, depends on 21 parameters defined
up to scale. Each camera provides two linear equations, so N = 10 cameras,
resulting in 2N + 1 = 21 equations, is the minimum number required in
order to have, generically, an (over)determined system.

(4) Obtain from Q̃ the Euclidean calibration either by computing the DAQ, as
explained in subsection 5.3 or by a direct recovery of an Euclidean coordi-
nate system, as indicated in subsection 5.4.

As previously mentioned, if the skew is zero but the aspect ratio is unknown,
a similar algorithm is possible in which one considers the back-projections of the
points (1, 0, 0) and (0, 1, 0). In this case, a minimum of 20 cameras is required (cf.
[15]).

6.3. Non-linear algorithm. The performance of linear algorithms is limited by
the fact that their search for the matrix of Q̃ is not directly performed on the actual
algebraic variety of the possible solutions, but on a linear space that contains this
variety, i.e., the space of symmetric matrices with zero antitrace.
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Now we consider a technique to obtain a result on the actual solution space. In
practice this leads to a nonlinear optimization problem that will benefit from the
knowledge of an approximate initial solution provided by the linear method. In this
context the usefulness of the linear algorithm will essentially depend on its ability
to provide an approximate solution close enough to the the true solution, so that
the subsequent nonlinear optimization converges to the optimal local minimum.

The proposed non-linear algorithm addresses the minimization of the cost func-
tion

C(Q̃) =
∑

i

|Q̃(ri, ri)|2 +
∑

i

|Q̃(r̄i, r̄i)|2

where the ri, r̄i, have been defined in step (2) of the previous linear algorithm. The
minimization of this cost function is constrained by the relationships

(12) Q̃ΩQ̃ = 0, ‖Q̃‖2 = 1

where ‖ · ‖ denotes the Frobenius norm.
The implementation essentially consists in the application of sequential quadratic

programming (SQP) [7] to the minimization of the quadratic cost function C over
the space of 6 × 6 symmetric matrices with zero antitrace.

The SQP algorithm operates as follows.
(1) Apply the linear algorithm given in 6.2 to obtain initial values of the ALQ

coefficients. Obtain from them the DAQ using the technique in 5.3 and
from it again the ALQ using (8). We term Q̃(0) the resulting ALQ.

(2) Apply the following basic iteration until convergence of the costs C(Q̃(k))
is achieved.
(a) Substitute the quadratic constraints (12) by their first order approxi-

mations around the available approximate solution Q̃(k).
(b) Solve exactly the resulting constrained optimization problem (qua-

dratic cost function with linear constraints), obtaining Q̃(k+1).

6.4. Experimental results. The previously described algorithms have been tested
with synthetic data in a series of experiments involving the reconstruction of a set
of 100 points from their projections in 10 to 40 images taken with uncalibrated
cameras with varying parameters. The 3D points lie close to the origin of coordi-
nates of an Euclidean reference and the cameras are located at random positions
lying approximately over a sphere centered at the origin and roughly pointing to-
wards it, so that the set of projected points is approximately centered in the virtual
CCD. Skew angle θ and aspect ratio τ vary with uniform distributions with re-
spective averages π/2 and 1 and maximum deviations of ±10% from the average.
Normalized focal length for each camera α is selected at random with a uniform
distribution centered at α = 3780 with a maximum deviation of ±10% from this
value. The principal point is obtained from a uniform distribution with support
in the square [2560/4, 1920/4]. With these parameters the projected point coordi-
nates have values within the square of sides [−1500, 1500] and, in each image, the
points are contained inside a square of side 1500 pixels. After computing the point
projections, these are perturbed by the addition of zero-mean Gaussian noise with
different variances.

The complete processing for each experiment consists of a projective calibration
followed by the computation of the camera parameters by means of the proposed al-
gorithms. Projective calibration is performed in four steps. Firstly, an homography
with matrix T = diag(c, c, 1) (similarity transformation) is applied to all projected
points so that a normalization of the coordinates is performed. The value c is the
one that makes equal to

√
2 the average distance from the transformed points to

the origin in the first image. Secondly, the “Gold Standard” algorithm described
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in [9]) is applied to a pair of images to obtain the projective calibration of two
cameras. Next, the previously computed 3D points are employed for the linear
computation of the projection matrices for the remaining images so that an initial
projective calibration is achieved in the projective reference previously obtained for
two cameras (see [9, p. 167]). Finally, a global projective bundle adjustment is
performed (see [9, p. 423]).

For each camera configuration, Gaussian noise is added with typical deviations
σ between 0 and 5 pixels. Then the focal length relative error and the RMS error
in the principal point are measured.

Figure 2 shows the results for 12 cameras as a function of noise typical deviation.
Figure 3 shows the dependency of the results on both noise typical deviation and
number of cameras. Observe that the higher computational cost of the non-linear
algorithm is rewarded by a significantly better performance. Also note that in both
cases the sensitivity on the number of cameras is meaningful between 10 and 15
cameras and afterwards it shows a saturation effect. Average computation times
for a Matlab implementation running on a Pentium 4 CPU at 2.66 GHz are: 0.03 s
for the initial projective calibration, 0.40 s for the projective bundle adjustment,
0.04 s for the initialization of the SQP algorithm by the linear technique, and 0.16 s
for the SQP-based optimization.
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Figure 2. Error in focal length (left) and principal point (right)
for 12 cameras as a function of the noise typical deviation (pixels).
Continuous line: SQP algorithm; stippled line: linear algorithm.

7. Conclusions and future work

We have shown how the Euclidean structure of space is encoded in the absolute
line quadric (ALQ), given by the lines intersecting the absolute conic. The adequacy
of exterior algebra to deal with linear subspaces of projective spaces has permitted
(i) a clear and compact definition of the ALQ in terms of the dual absolute quadric
(see (8)), (ii) a clean characterization of the ALQ (see theorem 5.1) and (iii)the
design of techniques for the direct recovery of the information encoded by the ALQ
(see theorem 5.5).

A linear and a non-linear algorithms for the autocalibration of cameras with
known pixel shape and otherwise arbitrarily varying parameters have been tested
with simulated data showing: (i) that the linear method is suitable to obtain an
initial solution that can be later used as input for a non-linear algorithm and (ii) the
good performance of the non-linear technique, with, for example, an average error
in focal length of about 3% for noise standard deviation σ = 5 and 15 cameras in
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Figure 3. Error in focal length (left) and principal point (right)
as a function of the number of cameras for noise typical deviations
σ = 0, 1, 3, and 5 pixels. Continuous line: SQP algorithm; stippled
line: linear algorithm.

the experimental conditions explained in the text. The influence of the noise typical
deviation and the number of cameras on the average errors have been empirically
studied.

Among the remaining points for further study, we can mention the optimal ap-
proximation of an ALQ obtained by linear methods by a proper ALQ meeting all the
constraints and the behavior of the described techniques in relation to degenerate
camera configurations. Furthermore, the algorithmic possibilities of the ALQ are
far from being completely exploited, including the performance of the algorithms
with real images.

8. Appendix

8.1. Meet and join operators. The join operation � coincides the wedge prod-
uct, i.e., a � b = a ∧ b. The meet operator � can be introduced in several ways.
The closest to our presentation is the following. Let V be a real vector space in
which a scalar product and an orientation are given. The Hodge star ∗ defined
by ∗vI = (−1)|I,I′|vI′ where {vi} is a positively oriented orthonormal basis and I ′

is the complement of I in {1, . . . , n}. It can be checked that this defines a linear
mapping ∗ :

∧p
V → ∧n−p+1

V independently of the chosen basis. Its relationship
with the A operator is the following. The scalar product induces a canonical iso-
morphism ϕ :

∧p V ∗ → ∧p V given by ϕ(v∗I ) = vI . Then we have that ∗ = ϕ ◦ A,
i.e., the following diagram is commutative:∧p V

A ��

∗
������������

∧n+1−p V ∗

ϕ

��∧n+1−p
V

.

The meet operator can now be defined as a mapping which assigns to a pair (a, b),
a ∈ ∧p V , b ∈ ∧q V , the element

a � b = (−1)(p+q)(p+q−n−1) ∗ ((∗a) ∧ (∗b)) ∈
∧p+q−n−1

V.

It can be checked that this construction extends to the complexified vector space
of V (see [22, p. 156]). If a and b are representatives of subspaces A and B, the
meet operator gives a representative of A ∩ B if A + B spans the whole space. So,
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for example, in P3 it fails when we try to check whether a given point lies or not
on a line or to compute the intersection point of two coplanar lines.

8.2. Notation and generalities on quadrics. We will use three different ways
to interpret algebraically a quadric S, defined up to a non-zero scalar factor.

(1) We can see it as a bilinear symmetric form S : V × V → C.
(2) It can be seen as the quadratic form associated to the bilinear form given by

u �→ S(u, u). If we are given the quadratic form we can recover the bilinear
form by means of the polarity identity, S(u, v) = 1

2 (S(u + v, u + v) −
S(u, u)− S(v, v)).

(3) A quadric can be given as a symmetric linear mapping S : V → V ∗, i.e.,
such that for any vector u ∈ V , the mapping S(u) : V → C satisfies
S(u)(v) = S(v)(u) for any vector v ∈ V . This third interpretation of
a quadric is called the polar form. If we are given the bilinear symmetric
form S : V ×V → C, we define the polar form S : V → V ∗ so that for u ∈ V
the element S(u) ∈ V ∗ acts on vectors v ∈ V by the rule S(u)(v) = S(u, v).
Conversely, given the bilinear symmetric form, we recover the polar form
as S(u) = S(u, ·). It is worth to note that the tangent hyperplane to the
zero-set of the quadric at the point represented by u0 is given by the linear
form S(u0), i.e., it has equation S(u0, v) = 0.

Taking any basis {vi} of V , the matrix of S is given by Sij = S(vi, vj). Its polar
form, S : V → V ∗ is given by S(vi) =

∑n
j=0 Sijv

∗
j .

8.3. Universal property of exterior algebra. The exterior product satisfies
the following universal property: given any alternating multilinear mapping f :
V × · · · × V → W , there exists a unique linear mapping f̃ :

∧k
V → W such that

f̃(u1 ∧ · · · ∧ uk) = f(u1, . . . , uk) (see [5, p. 427]).

8.4. Lemmas and proofs.

Proof of equation (4). To check this, it is enough to verify that for any basis element
vJ ∈ ∧n+1−p

V we have that AvI(vJ ) = (−1)|I,I′|v∗I′(vJ ). If J is not a permutation
of I ′ then both members are zero. In the other case, denoting by (−1)|J→I′| the
signature of the permutation taking J to I ′, we have that

(AvI)(vJ )V = vI ∧ vJ = (−1)|J→I′|vI ∧ vI′ = v∗I′(vJ )(−1)|I,I′|V

since v∗I′(vJ ) = (−1)|J→I′| and vI ∧ vI′ = (−1)|I,I′|V. �

Proof of Theorem 4.1. Given a covector α ∈ V ∗ and a p-vector a ∈ ∧p
V , we define

the interior product α� a = p C[1](α ⊗ a). It is easy to check that the interior
product is a linear mapping carrying p-covectors into (p − 1)-covectors and such
that α� (a ∧ b) = (α�a) ∧ b + (−1)|b|a ∧ (α� b). Let dim V = n + 1, and let us take
any α ∈ V ∗. We have that

0 = α� (a ∧ a) = (α� a) ∧ a + (−1)|a|a ∧ (α� a) = 2 (α� a) ∧ a,

taking into account formula (2) and that |a| = 2. If we find any α ∈ V ∗ such that
V � v = α� a 
= 0, we are done since v ∧ a = 0 implies that a = v ∧ w for some
w ∈ V . This last assertion is easily checked considering an adapted basis of V ,
{vi}, such that v0 = v and checking that the condition v ∧ a = 0 implies that any
coefficient aij with 0 < i < j in the decomposition a =

∑
i<j aijvi ∧vj must vanish,

so we can factor out v0.
Therefore it remains to prove that there exists some α ∈ V ∗ such that α� a 
= 0.

Let W ∗ = {α ∈ V ∗ : α� a = 0}. Clearly W ∗ is a vector subspace of V ∗. We assert
that dimW ∗ = p ≤ (n+1)−2. To see this, it is enough to consider again a cobasis
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adapted to W ∗, say {v∗i }, such that W ∗ is represented by v∗0 ∧ · · · ∧ v∗p−1. Let {vi}
be its dual basis. For any of the v∗k ∈ W ∗ we have that

v∗k�a = −
∑

0≤i<k

aikvi +
∑

k<j≤n

akjvj = 0,

so any coefficient aik or akj , 0 ≤ k ≤ p − 1, 0 ≤ i, j ≤ n, must vanish, i.e., a
can be written using exclusively the last n + 1 − p vectors vp, . . . , vn. But since
0 
= a ∈ ∧2V , we need at least two vectors of the basis to build a, so n + 1− p ≥ 2,
i.e., p ≤ n − 1. Therefore W ∗ does not exhaust V ∗ and there exists α ∈ V ∗ such
that α� a 
= 0. �

Proof of Theorem 5.1. First we check that the conditions are necessary. If Q :
V ∗ → V is a symmetric linear mapping of rank three, P (Q(V ∗)) is a plane of P3

and, consequently, the image of its associate mapping, P (Q̃(
∧2

V ∗)), corresponds
to the lines contained in this plane, i.e., it is a β-plane.

Let us check that the condition is also sufficient, so let Q̃ :
∧2V ∗ → ∧2V be

a symmetric mapping whose image is a β-plane (we call it Q̃ although we do not
know yet whether it is associated to some Q). Let v∗0 be a representative of the
plane of P3 corresponding to this β-plane, and let B∗ = {v∗0 , ..., v∗3} be a basis
of V ∗. Let B = {v0, ..., v3} be its dual basis. Therefore Q̃(

∧2V ∗) is spanned by
{v1 ∧ v2, v2 ∧ v3, v3 ∧ v1}, and therefore, with respect to the bases 2 {v∗0 ∧ v∗1 , v∗0 ∧
v∗2 , v∗0∧v∗3 , v∗1∧v∗2 , v∗2∧v∗3 , v∗3∧v∗1} and {v0∧v1, v0∧v2, v0∧v3, v1∧v2, v2∧v3, v3∧v1},
the matrix MQ̃ of Q̃ has its three first rows equal to zero. Taking into account the
symmetry of this matrix, we have

MQ̃ =
(

03×3 03×3

03×3 C

)

for some 3×3 nonsingular symmetric matrix C. Now let us consider any rank-three
linear symmetric mapping Q′ : V ∗ → V . If we impose that its image corresponds
to v∗0 and we take into account its symmetry, we see that its matrix with respect
to the bases B∗ and B will have the form

NQ′ =
(

01×1 01×3

03×1 D

)

for some nonsingular symmetric 3× 3 matrix D. A direct computation shows that
Q′ induces a symmetric linear mapping V ∗ ∧ V ∗ → V ∧ V with matrix

NQ̃′ =
(

03×3 03×3

03×3 adj D

)

Consequently, the mapping Q given by matrix

Q ≡
(

01×1 01×3

03×1

√|C|C−1

)

(or its opposite as well) will induce the mapping Q̃. �

Proof of Theorem 5.2. From Theorem 5.1 we know that the hypothesis of this The-
orem is equivalent to the property that the image of Q̃ is a β-plane. Let us first
consider the weaker condition that the image of Q̃ is a subset (necessary linear) of
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the Klein quadric. We have the following chain of equivalences:

Q̃(α) belongs to the Klein quadric ∀α ∈
∧2

V ∗

⇐⇒ (definition of the Klein quadric) Q̃(α) ∧ Q̃(α) = 0 ∀α ∈
∧2

V ∗

⇐⇒ (definition of A) A(Q̃(α))(Q̃(α)) = 0 ∀α ∈
∧2

V ∗

⇐⇒ (symmetry of Q̃) ((Q̃AQ̃)α)(α) = 0 ∀α ∈
∧2

V ∗

⇐⇒ Q̃AQ̃ = 0.

Therefore, to assure that the image of Q̃ is a plane of the Klein quadric, we must
check that Q̃AQ̃ = 0 and that rank Q̃ = 3. If this happens, its image must be either
an α-plane or a β-plane, so it is necessary to check also this, which is a discrete
condition. This ends the proof of the Theorem. �

Proof of Theorem 5.3. We recall that given any endomorphism of a vector space,
G : W → W , the trace of G can be computed as trace(G) =

∑
i w∗

i (G(wi)) for
any basis {wi} of W . Let {vi} be a basis of V adapted to F , in the sense that
F (v∗i ) = λivi. Such a basis exists since F is symmetric. Now we compute the trace
of ΩF̃ using the basis {2v∗i ∧ v∗j , i < j} of

∧2
V ∗, as∑

i<j

(vi ∧ vj)(ΩF̃ (2v∗i ∧ v∗j )) = 0 ⇐⇒ (Definition of F̃ )

∑
i<j

(vi ∧ vj)(Ω(F (v∗i ) ∧ F (v∗j ))) = 0 ⇐⇒ (Definition of Ω = A in equation (3))

∑
i<j

Ω(vi ∧ vj) ∧ Ω(F (v∗i ) ∧ F (v∗j )) = 0 ⇐⇒ (The basis is adapted to F )

∑
i<j

Ω(vi ∧ vj) ∧ Ω((λivi) ∧ (λjvj)) = 0,

and the last equation holds since Ω transforms decomposable bivectors onto de-
composable bivectors. �
Proof of Lemma 5.4. Let u3 be any vector such that the matrix C = (u0 u1 u2 u3)
has determinant equal to one. Let C∗ = (u∗

0 u∗
1 u∗

2 u∗
3) expressed in the basis

{v∗i }. Note that C∗tC = I4, so C∗ = C−t. Since detC = 1, it follows that u∗
3 has

coordinates (−M0, M1,−M2, M3)t. According to the table in 3.2.1, A(u0 ∧ u2) =
u∗

3 ∧ u∗
1, and

C[1]((u0 ∧ u1) ⊗ A(u0 ∧ u2)) =
1
4
u0 ⊗ u∗

3.

Therefore α = u∗
3 = (−M0, M1,−M2, M3)t. �

Lemma 8.1. A symmetric 4 × 4 rank-three matrix is determined by any three
linearly independent rows or columns.

Proof. Let Q = (Qij) be such a matrix. Being Q symmetric, it is clear that the
knowledge of three rows or columns leaves only one unknown coefficient. Reordering
coordinates, if necessary, we can assume that the first three columns are known, so
the only unknown coefficient is Q44. The condition detQ = 0 is a linear determined
equation in this coefficient as long as detQ1..3,1..3 
= 0, so this is what should be
proved.

Let us denote by ui the columns of Q. Being the first three columns linearly
independent and rankQ = 3, there must exist a linear relation

(13) u4 = λ1u1 + λ2u2 + λ3u3.
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Let us see how the condition detQ1..3,1..3 = 0 leads us to a contradiction. Denoting
by ûi the three-vector obtained removing the last coordinate of ui, the condition
detQ1..3,1..3 = 0 is equivalent to

dim span 〈û1, û2, û3〉 ≤ 2.

This, together with equation (13) yields

dim span 〈û1, û2, û3, û4, 〉 ≤ 2

which contradicts, since Q is symmetric, the linear independence of the first three
columns. �

Proof of Theorem 5.5. First let us prove that in any decomposition MQ̃ = RT R,
the matrix R is of the form R = N

(
P Q

)
where

(
P Q

)
is some fixed rank-three

matrix independent of R and N is an orthogonal matrix. Therefore, given two
decompositions MQ̃ = RT R and MQ̃ = R̄T R̄, there exists an orthogonal matrix N̄

such that R̄ = N̄R.
To see this, let us consider a 6 × 6 regular matrix H that diagonalizes MQ̃, i.e.,

such that

HT MQ̃H =
(

I3×3 03×3

03×3 03×3

)
.

Let R0 :=
(
N W

)
:= RH. Let us check that N is orthogonal and that W = 0.

We have

HT MQ̃H = HT RT RH = RT
0 R0 =

(
NT N NT W
WT N WT W

)
=

(
I 0
0 0

)
.

Therefore N is indeed a 3×3 orthogonal matrix and W = 0. So R0 =
(
N 0

)
, and

defining
(

P Q
S T

)
:= H−1, we have that R = R0H

−1 = N
(
P Q

)
, as we wanted

to see.
Now we are going to consider a particular geometrically meaningful decom-

position MQ̃ = RT R. So let us consider an ALQ, i.e., a symmetric mapping
Q̃ :

∧2V ∗ → ∧2V whose image is a β-plane, stemming from a DAQ Q : V ∗ → V .
We can see Q̃ as a composition

∧2 V ∗ Q̃ �� im Q̃
� � i �� ∧2 V

where i is the inclusion mapping.
We consider an Euclidean basis of V , {u0, u1, u2, u3}. This basis produces an

associated basis B = {u0 ∧ u1, u1 ∧ u2, u2 ∧ u0} of im Q̃.
The matrix of the mapping Q̃ :

∧2V ∗ → im Q̃ with respect to the basis B�2V ∗ =
2{v∗0 ∧ v∗1 , v∗0 ∧ v∗2 , v∗0 ∧ v∗3 , v∗1 ∧ v∗2 , v∗3 ∧ v∗1 , v∗2 ∧ v∗3} associated with any basis of V

and the basis B of im Q̃ will be given by a 3 × 6 matrix

R =

⎛
⎝R01

01 · · · R01
23

R12
01 · · · R12

23

R20
01 · · · R20

23

⎞
⎠

of entries of the form Rkl
ij = 2(u∗

k ∧ u∗
l )

(
Q̃(2 v∗i ∧ v∗j )

)
, by the very definition of

dual basis.
Now let us consider the matrix of the inclusion mapping im Q̃ ↪→ ∧2

V with
respect to the bases B and B�2V = {v0∧v1, v0∧v2, v0∧v3, v1∧v2, v3∧v1, v2∧v3}.
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The entries of this matrix are of the form 2(v∗i ∧ v∗j ) (uk ∧ ul). We have

2(v∗i ∧ v∗j )(uk ∧ ul) = (since the basis is adapted to Q)

2(v∗i ∧ v∗j ) (Q(u∗
k) ∧ Q(u∗

l )) = (definition of Q̃)

2(v∗i ∧ v∗j )
(
Q̃(u∗

k ∧ u∗
l )

)
= 2(u∗

k ∧ u∗
l )

(
Q̃(v∗i ∧ v∗j )

)
(since Q̃ is symmetric)

so we conclude that the matrix of the inclusion is just 2RT . Therefore the matrix
MQ̃ can be written as a product MQ̃ = 2RT R = (

√
2R)T (

√
2R), as desired, and

the rows of R turn out to be the coordinates with respect to the basis B�2V of the
bivectors u0 ∧ u1, u1 ∧ u2 and u2 ∧ u0.

Note that this is also the case for any other R′ = NR, since R′ will have the
same geometric interpretation as R, using a different Euclidean reference.

Using Lemma 5.4 one can recover vectors u′
i = ±ui, i = 0, 1, 2, up to a common

sign ε. With any u′
3 independent from {u′

0, u
′
1, u

′
2} we will have a Euclidean basis,

since it differs from the basis {u0, u1, u2, u3} just by a translation and a dilation. �
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