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Abstract. Recently the observation of surveillanced areas scanned by
multi-camera systems is getting more and more popular. The newly de-
veloped sensors give new opportunities for exploiting novel features.
Using the information gained from a conventional camera we have data
about the colours, the shape of objects and the micro-structures; and we
have additional information while using thermal camera in the darkness.
A camera with depth sensor can find the motion and the position of an
object in space even in the case when conventional cameras are unusable.
How can we register the corresponding elements on different pictures?
There are numerous approaches to the solution of this problem. One of
the most used solutions is that the registration is based on the motion.
In this method it is not necessary to look for the main features on the
pictures to register the related objects, since the features would be dif-
ferent because of the different properties of the cameras. It is easier and
faster if the registration is based on the motion. But other problems will
arise in this case: shadows or shiny specular surfaces cause problems at
the motion.
This paper is about how can we register the corresponding elements in
a multi-camera system, and how can we find a homography between the
image planes in real time. So we can register a moving object in the
images of different cameras based on the depth information.

1 Introduction

In crowded places it is difficult to track correctly individual people from a single
point of view with a conventional camera. That is why we started to investigate
multi-camera systems for a better tracking algorithm. We try to fit different
camera images onto one common image plane in order to gain a 3-dimensional
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picture of the investigated territory in real time. Plenty of research results exist
in the literature in connection with this topic when one tries image registration
or fitting objects. It’s more difficult to distinguish different objects on an image
because of the occlusion. If we have more images from different angles about
the same screen then we will have more information about that fixed place and
the objects in it. By setting an image as the reference image, we can identify
the ground plane on every image. Hence we can match the ground points of the
objects. If we would shift the ground plane in the direction of its normal vector
then we would cut the objects in the same position in all the images. Further-
more we could get more information from a view from above: we could get the
spatial position of each object, if we could register the images in different planes
together. This plane might be shifted to scan the intersections in the common
space of the views [10].
A common plane of all views has an outstanding role: [12] assumes that a refer-
ence plane is visible in all views, and shows for this case that lines and cameras,
as well as, planes and cameras have a linear relationship. Consequently, all 3D
features and all cameras can be reconstructed simultaneously from a single linear
system, which handles missing image measurements naturally.
We used the idea of Khan et. Al [10] and developed a method that applies planar
homographic occupancy. The present method is developed for multiple planes
parallel with the center line of a depth sensor applied together with at least
one of the cameras (this is different from the method of Khan and Shah). We
try to fit the different image planes onto one screen and try to find different
homographies for this, in order to shift these planes into different depth values,
then getting an exact match of corresponding moving objects on different image
planes. We use a combinatorial algorithm to find these homographies applying a
linear programming algorithm from the literature of combinatorial optimization.
This algorithm is developed with applying an optimization method based on the
well-known golden ratio [9].
The aforementioned method can be used if we have more cameras than two
or three, for example on a football match we can follow the movement of the
players with this algorithm. In practice there are few events where multiple-
camera systems are necessary. In these cases there are different methods for
point to point registration and we chose the most efficient one according to our
problem. Camera observation is usually integrated into busy places hence there
exists motion in all the images. We can make motion mask statistics about these
movements, related to a reference image. By detecting motion on the pixel array
of this image we make a conditional statistics to the motion masks of the refer-
ence image and to all the other images. We will have different motion statistics
for each pixel of each reference image belonging to different cameras exactly as
many statistics as many cameras we used to integrate into the system. [15] ( see
Fig. 1 ) The structure of this paper is first we introduce an algorithm for the
image matching. In particular we will talk about the motion detection, the fit-
ting of the image planes and the mathematical problems that we found and the
mathematical background of our solution. In the next section we will mention
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some experimental results. And we will mention some future directions of this
research, some possible ways to carry on with this work.

Fig. 1: Images of the first row are the motion masks. We build the motion statis-
tics maps, assigning places where motion exists (white pixel) on the reference
motion mask. Then we add all motion masks to statistics belonging to it, in-
cluding the reference motion mask. If we have enough number of measurements,
we can pair correlated moving pixels related to the reference camera. This con-
ditional statistics of motion map consists of Gaussian distributions. The most
probable pair of a point of the probabilistic map is that one of the highest prob-
ability. In the probabilistic pairing we assign not only one point but a small
neighborhood around it. The red areas of the statistics represent the neighbor-
hood around the maximum.

2 Image Matching

The main steps of the algorithm for image matching based on the depth values
are as follows:

1. Own motion detection algorithm for the depth sensor.
2. From the motion masks, we can get the coordinates of different points on

all images, and we will show how it becomes possible to register the corre-
sponding points.
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3. What about the homography? Different problems are coming up if these
corresponding points are belonging to planes that are orthogonal to the
ground plane and have different depth values. How can we deal with these
problems with a depth sensor?

4. Now we have a homography to project corresponding points from the same
plane onto a different plane. We give a method to modify this homography in
order to calculate different homographies into parallel planes to the original
one.

5. We need to define the variable γ that doesn’t change in a linear manner
while the change of the depth values is linear.

2.1 Depth motion detection

For the cameras without depth sensors we use the built in class of OpenCV.
This class is BackgroundSubtractorMOG. Unfortunately this motion detector
does not give perfect results, furthermore the output will be too noisy. If we
have more moving objects in occlusion with each other, then we are not able
to find their original depth values. That was the motivation why we developed
an algorithm for depth sensors, that determines the motion from the change of
depth values [13]. So we get more reliable and less noisy motion masks from the
depth sensor and these are important for further measurements.
The fundamental idea is that the sensor collects data in the first step, and we
store them. If we have collected enough data, the algorithm can create an initial
background mask from this database. Each pixel of this initial mask will get the
average value of the measurements in that pixel. If there is a moving object, then
the depth values of this object will be smaller, then the values of the background
mask, and the depth values of the moving object will be added to the foreground
mask. The algorithm can learn, for example if an object in the foreground mask
doesn’t move, and the depth values of it are not changing, and these values are
lower than a threshold, then the background mask will be updated with these
values. Furthermore if the depth values of an object suddenly get larger (after
an object has moved away the depth values of the background became larger),
then the algorithm updates the average of the depth values to the background
mask. [2, 6, 3] ( see Fig. 2 )
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Fig. 2: The image on the right was made with the in-built motion detector class
of the OpenCV. We can see, that the motion mask is not perfect, and the image
contains noisy pixels.
The image on the left has a good motion mask without noise as the result of the
proposed method.

2.2 Corresponding motion statistics

It is necessary to find accurate point pairs of high correspondence in order to
obtain a good homography between two image planes. The size and the shape
of a moving object may be significantly different in images of different cameras,
and matching corresponding points is more difficult and becomes less accurate
if we work with more cameras. That was the reason why we create co-motion
statistics for each camera. We applied the idea of investigating corresponding
motions from a previous work of the authors László Havasi, Tamás Szirányi and
our former colleague and co-atuhor Zoltán Szlávik [15]. We need a reference
camera, fixing its image plane as the reference plane where we will fit the image
planes of the other cameras with the proper homographies. This camera must
need a depth sensor, so we used a professional camera with depth sensor, namely
Mesa Imaging Swiss Ranger 4000.
If our algorithm detects motion in any pixel of the reference image, then we
update the statistics of this pixel position for each camera with the current
motion mask [15].
For memory and run-time reasons we re-size the reference image and motion
maps to size 80 * 80. For example we set a motion statistics map with 80 * 80
size to each camera, and each element of that map is a statistics with size 80 * 80.
Let us suppose that we sense motion in the coordinates (45, 35) of the reference
image, then we add the motion mask of the related image to the statistical map
of the pixel in the coordinates (45,35) of the reference camera. Trivially we have
to re-size the motion masks of the other cameras to size 80*80 too. Experimental
results showed that the resizing for this size keeps the sufficient information for
the given task.
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2.3 Problem with the homography

The cameras are sensing the world from different point of views, so the corre-
sponding objects will have different sizes on their images. We used homography
to fit the different images onto a reference image. We need four point pairs to
find a homography between two image planes. A point pair is an element from
the Cartesian product of the set of the vertices of the reference image plane and
another image plane. We are looking for corresponding points on these image
planes, but after the fitting the transformation may deform the picture (because
the image planes are not have to be coplanar), moreover, the transformation
may rotate the whole image plane.
But if the corresponding points would lie in the same plane it would not be
sufficient neither. Because the fitting would be accurate only in their plane, but
it would be inaccurate in all the other parallel planes. ( see Fig. 3 ) [4, 7, 14]

Fig. 3: In these pictures one can see in the first column the outputs of a depth
sensor, in the second column the outputs of a conventional camera and in the
third column the image after merging the motion masks of these two sensors
First row: The object is placed behind the proper plane of the homography
Second row: The object is placed in the proper plane of the homography
Third row: The object is placed before the proper plane of the homography

Our task is to project these point pairs onto the same image plane and make
a procedure that can shift this plane into different depth values. When this
procedure is fast enough that will make us able to match the corresponding
moving objects on different camera images in real time.
In order to ensure that the corresponding points lie in the same plane, we use



Calibrationless Sensor Fusion, IWCIA 2014, Brno 7

a depth filter on the reference camera to choose that plane on which we want
to find a homography. Now the reference camera will perceive the motions only
in the environment of the selected depth, hence it will generate motion masks
only in that depth. This will result motion statistics that we needed to have for
our algorithm. The point pairs that can be achieved from these statistics will be
located on the same plane. ( see Fig. 4 ) For further details the reader is referred
to: [14]

(a) Object in the plane of the
homography

(b) Object in a different plane

Fig. 4: The depth filter: actual distance is: 3,5m from the camera with 0,3m
depth range. Valid geometrical depth is 3,2 – 3,8m.
In the figures in the first column there is an image from the depth sensor when
we apply a depth filter on it and the motion mask of the depth sensor without
the depth filter and the intersection of the two images in the first two rows,
from top to bottom respectively. In the second column there is an image from
a conventional camera and the motion mask of that image and a eroded shrunk
image from the motion mask of the conventional camera, from top to bottom
respectively. The bottommost pictures are applied during the construction of
the statistics maps of the co-motion.

2.4 Pushing the plane of the homography depending on depth

After we have found a good homography for the points in the same depth, we
only have to solve the parallel shifting of homography calculation for different
source planes.
We used the fusion of multiple planes to increase robustness and accuracy of our
method. Our method performs fusion of different image planes onto one reference
plane. One can see that conventional feature correspondence-based methods are
not feasible for homography calculus among image planes. For example if we
have a homography Hp,q induced by a reference plane r between to different
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views p and q then the homography Hp,q induced by a plane s parallel to r is
given by the following formula: (for further details the reader is referred to [10]:

Hpsq = (Hprq + [0|γvref ])(I3x3 −
1

1 + γ
[0|γvref ]) (1)

Where vref is the vanishing point of the normal direction and γ is a scalar mul-
tiple that has to control the distance between the parallel planes. Typically we
use the plane orthogonal to the center line of the depth sensor of the reference
camera as the reference plane and the parallel direction with that line as the ref-
erence direction. Here the homographies were determined with SIFT [11] feature
matches and using the RANSAC algorithm [8].

2.5 Defining the γ parameter

If the value γ approaches the ±∞, then the homography Hpsq converges to
stable states. Experimental results showed that the final value of Hpsq is well
approximated on the interval [-20, 20]. ( see Fig. 5 )

Fig. 5: We used two different motion masks. One is the motion mask of the
reference camera the other one is the motion mask of another camera that we
want to fit. The first graph is about the case when the matching function is
calculated in an image plane with larger depth value than the the reference
plane has. The other graph is about a matching function in the reference plane.
The axis X shows the value of γ, the axis Y is the amount of matching points
after the fitting. A coordinate on the motion mask of the reference image will
be matched if our algorithm senses motion in that coordinate and in that pixel
there is motion in the motion mask of the other camera too. Our algorithm is
looking for a fitting that maximizes the amount of the matched points between
two images.
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After we detected a homography we wanted to find a method to refresh
the optimal value of the scalar multiple γ for the best fitting if we shift our
reference plane into different depth. We applied a combinatorial method to find
this optimal γ. First we calculated a range small enough to start the search in
with random evaluating an error function indicating the value of correct fitting.
After that we applied a convex optimization method, a specially modified version
of the well-known interval halfing method, applying the golden ratio values for
the shrinking of the interval. We could do this because we managed to prove
that this error function using this value γ is convex with probability 1. We made
some tests and it resulted that our algorithm runs in real time. In comparison
with other methods, there are some algorithms trying to solve problems similar
to our, for example in the article [1] we find similar arrangement of equipments,
but that solution takes about a minute per frame to get depth information, which
is much slower than our present real-time approach.

3 Experimental results

We used this system for an indoor scene because our camera with the depth
sensor is unsuitable for outdoor recording, the algorithm itself is applicable in
outdoor territories too. However the base distance of cameras is a main parame-
ter of our algorithm. If this distance is getting larger then the imprecision of the
matching will be bigger. Furthermore the response time will be slower, if more
cameras are integrated into the system ( see Fig. 6 and Fig. 7 ), or we increase
the resolution of the cameras.
Currently the system works in case of only one object ( see Fig. 9 and Fig. 10 ).
However if we can collect enough information with this single object about the γ
values of different depth, then the matching algorithm can be omitted, simply we
can search in a database to find the value γ of the current depth. This method
eliminates the need for a matching algorithm handling more objects. Since we
have a database of pairs of depth and γ values, it is possible to estimate from
the picture of depth camera that one or more objects moving in front of the
cameras. After the database has been built up, we are left only a few possibili-
ties to choose the proper depth value and the object helps us to determine the
exact depth value because the matching of the objects would not be possible in
another plane with the given value γ.
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Fig. 6: Figures in the first and third lines show the CPU usage where the axis
x is the time (CPU time) and the axis y is the CPU utilization in percentage.
We started the measurements from the idle state of the CPU. The steps of
each measurement were the following: start the sampling of the cameras one
by one, start the generating of the motion masks, start the fitting phase (two
different types of result, successful or unsuccessful), stop the fitting phase, stop
the generation of the motion masks, stop the sampling of the cameras. Figures
in the second and the fourth lines show the response time of the algorithm where
the axis x is the time (CPU time) and the axis y is the response time in second.
The first set of figures of the first two rows are belong together and their axis x is
uniformly scaled in order to get a better view. The different parametrization of
measurements are indicated in the title of the figure in the form (n, d, r) where
n stands for the number of cameras we used, d stands for the distance of the
cameras from the reference camera and r stands for the resolution we applied
(high or low). The resolution of the Mesa camera is (176x144), the two different
resolutions we used for the Axis Network camera are (320x180) and (800x450)
and for the Axis Thermal Network camera are (240x180) and (480x360).
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Fig. 7: These figures show what happens if we increase the distances between the
cameras and the reference camera.

We made a figure to compare the response times of the different cases. See
Fig. 8.
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Fig. 8: Response time of the matching with 2 or 3 cameras
Red line is the measurement of 2 cameras, blue line is the measurement of 3
cameras. Axis X is the serial number of frames, axis Y is the running time in
millisec. If the algorithm finds a good matching, the response time will be under
100 millisec in case of 2 camera (between 30 - 70), if do not find, then this time
will be larger (between 80 - 100). In the other case these time values are higher.

Fig. 9: The result of 2 cameras
We used a depth sensor (Mesa Imaging Swiss Ranger 4000) and a visible spec-
trum camera (Axis Optical Camera)
The first two images are the raw data from cameras in the first row. The first
image of the second row is the matching with a plane gained by pushing the
plane of the homography, second image is the original plane of the homography
without pushing. Third image of the first row is the result on the raw data with
the matching homography.
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Fig. 10: The result of 3 cameras
We used a depth sensor (Mesa Imaging Swiss Ranger 4000), a visible spectrum
camera (Axis Optical Camera), and a thermal camera (Axis Thermal Camera)
The first three images are the raw data from cameras. The first image of the
second row is the matching with a plane gained by pushing the plane of the
homographies, second image is the original plane of the homographies without
pushing. Third image of the second row is the result on the raw data after the
matching with the homographies.

4 Conclusions

The paper presents a new method for camera fusion. We used co-motion statistics
to register the image planes together, and a combinatorial algorithm to find
depth values to each image planes. Our idea was to combine these methods
and to use the golden ratio in the convex optimization step. It may provide a
solution to application cases like safety systems operating with more cameras.
It also helps to make a conclusion in case of the breakdown of a camera, caused
that by an intruder target person, if the rest of the cameras perceive him. If
the system has already finished the learning phase, then the remaining cameras
are enough to recognize the target person on their images and determine the
position of the intruder target person in the image of the camera that was broke
down.
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