1,738 research outputs found

    Critical Behavior of the Ferromagnetic Ising Model on a Sierpinski Carpet: Monte Carlo Renormalization Group Study

    Full text link
    We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpi\'nski fractal with Hausdorff dimension df≃1.8928d_f\simeq 1.8928. This method is shown to be relevant to the calculation of the critical temperature TcT_c and the magnetic eigen-exponent yhy_h on such structures. On the other hand, scaling corrections hinder the calculation of the temperature eigen-exponent yty_t. At last, the results are shown to be consistent with a finite size scaling analysis.Comment: 16 pages, 7 figure

    Magnetic phase diagram in Eu1−x_{1-x}Lax_xFe2_2As2_2 single crystals

    Full text link
    We have systematically measured resistivity, susceptibility and specific heat under different magnetic fields (H) in Eu1−x_{1-x}Lax_xFe2_2As2_2 single crystals. It is found that a metamagnetic transition from A-type antiferromagnetism to ferromagnetism occurs at a critical field for magnetic sublattice of Eu2+Eu^{2+}. The jump of specific heat is suppressed and shifts to low temperature with increasing H up to the critical value, then shifts to high temperature with further increasing H. Such behavior supports the metamagnetic transition. Detailed H-T phase diagrams for x=0 and 0.15 crystals are given, and possible magnetic structure is proposed. Magnetoresistance measurements indicate that there exists a strong coupling between local moment of Eu2+Eu^{2+} and charge in Fe-As layer. These results are very significant to understand the underlying physics of FeAs superconductors.Comment: 5 pages, 4 figure

    Canonical Partition Functions for Parastatistical Systems of any order

    Get PDF
    A general formula for the canonical partition function for a system obeying any statistics based on the permutation group is derived. The formula expresses the canonical partition function in terms of sums of Schur functions. The only hitherto known result due to Suranyi [ Phys. Rev. Lett. {\bf 65}, 2329 (1990)] for parasystems of order two is shown to arise as a special case of our general formula. Our results also yield all the relevant information about the structure of the Fock spaces for parasystems.Comment: 9 pages, No figures, Revte

    Magnetic resonance imaging of glutamate in neuroinflammation

    Get PDF
    AbstractInflammation in central nervous system (CNS) is one of the most severe diseases, and also plays an impellent role in some neurodegenerative diseases. Glutamate (Glu) has been considered relevant to the pathogenesis of neuroinflammation. In order to diagnose neuroinflammation incipiently and precisely, we review the pathobiological events in the early stages of neuroinflammation, the interactions between Glu and neuroinflammation, and two kinds of magnetic resonance techniques of imaging Glu (chemical exchange saturation transfer and magnetic resonance spectroscopy)

    Spin state and phase competition in TbBaCo_{2}O_{5.5} and the lanthanide series LnBaCo_{2}O_{5+\delta} (0<=\delta<=1)

    Full text link
    A clear physics picture of TbBaCo2_{2}O5.5_{5.5} is revealed on the basis of density functional theory calculations. An antiferromagnetic (AFM) superexchange coupling between the almost high-spin Co3+^{3+} ions competes with a ferromagnetic (FM) interaction mediated by both p-d exchange and double exchange, being responsible for the observed AFM-FM transition. And the metal-insulator transition is accompanied by an xy/xz orbital-ordering transition. Moreover, this picture can be generalized to the whole lanthanide series, and it is predicted that a few room-temperature magnetoresistance materials could be found in LnBa1−x_{1-x}Ax_{x}Co2_{2}O5+δ_{5+\delta} (Ln=Ho,Er,Tm,Yb,Lu; A=Sr,Ca,Mg).Comment: 13 pages, 2 figures; to be published in Phys. Rev. B on 1st Sept. Title and Bylines are added to the revised versio

    Laser gas-discharge absorption measurements of the ratio of two transition rates in argon

    Full text link
    The ratio of two line strengths at 922.7 nm and 978.7 nm of argon is measured in an argon pulsed discharge with the use of a single-mode Ti:Sapphire laser. The result 3.29(0.13) is in agreement with our theoretical prediction 3.23 and with a less accurate ratio 2.89(0.43) from the NIST database.Comment: 5 pages, 2 figures, 1 tabl

    A Cluster Method for the Ashkin--Teller Model

    Full text link
    A cluster Monte Carlo algorithm for the Ashkin-Teller (AT) model is constructed according to the guidelines of a general scheme for such algorithms. Its dynamical behaviour is tested for the square lattice AT model. We perform simulations on the line of critical points along which the exponents vary continuously, and find that critical slowing down is significantly reduced. We find continuous variation of the dynamical exponent zz along the line, following the variation of the ratio α/ν\alpha/\nu, in a manner which satisfies the Li-Sokal bound zcluster≥α/νz_{cluster}\geq\alpha/\nu, that was so far proved only for Potts models.Comment: 18 pages, Revtex, figures include

    Simulation of Potts models with real q and no critical slowing down

    Full text link
    A Monte Carlo algorithm is proposed to simulate ferromagnetic q-state Potts model for any real q>0. A single update is a random sequence of disordering and deterministic moves, one for each link of the lattice. A disordering move attributes a random value to the link, regardless of the state of the system, while in a deterministic move this value is a state function. The relative frequency of these moves depends on the two parameters q and beta. The algorithm is not affected by critical slowing down and the dynamical critical exponent z is exactly vanishing. We simulate in this way a 3D Potts model in the range 2<q<3 for estimating the critical value q_c where the thermal transition changes from second-order to first-order, and find q_c=2.620(5).Comment: 5 pages, 3 figures slightly extended version, to appear in Phys. Rev.

    Algorithm engineering for optimal alignment of protein structure distance matrices

    Get PDF
    Protein structural alignment is an important problem in computational biology. In this paper, we present first successes on provably optimal pairwise alignment of protein inter-residue distance matrices, using the popular Dali scoring function. We introduce the structural alignment problem formally, which enables us to express a variety of scoring functions used in previous work as special cases in a unified framework. Further, we propose the first mathematical model for computing optimal structural alignments based on dense inter-residue distance matrices. We therefore reformulate the problem as a special graph problem and give a tight integer linear programming model. We then present algorithm engineering techniques to handle the huge integer linear programs of real-life distance matrix alignment problems. Applying these techniques, we can compute provably optimal Dali alignments for the very first time
    • …
    corecore