66 research outputs found

    Semen Cryopreservation in Brazilian Freshwater Fish: Advances and Main Challenges

    Get PDF
    Studies on semen cryopreservation in Brazilian freshwater fish have been growing in number of publications and investigated species. Despite this apparent increase in research, standardization of cryoprotocols is still missing, making it clear that the grounds on the quality of cryopreserved semen has not yet reached a level that guarantee satisfactory results for its replication. This chapter aims to make a critical and reflective analysis on the ways cryopreservation of freshwater fish semen has been conducted in Brazil. The difficulties in standardizing protocols, broodstock, and selection of genetically superior animals; the barriers in transferring technology from laboratory benches to the field and make feasible the use of cryopreserved semen on a commercial scale; the formation of germplasm banks and the responsible use of cryopreserved material are also discussed. We have no intention to point out the successes and mistakes that may have been committed in pursuing development of cryopreservation protocols, but a reflection on the future directions considering what should be pondered on this subject with objectivity and scientific consolidation

    Comparative study of planned and unplanned excisions for the treatment of soft tissue sarcoma of the extremities

    Get PDF
    OBJECTIVE: Unplanned excision of soft tissue sarcomas is common because benign soft tissue lesions are very frequent. This study evaluated the impact of unplanned resections on overall survival, local recurrence and distant metastasis in patients with soft tissue sarcomas of the extremities. METHODS: In total, 52 patients who were diagnosed with soft tissue sarcomas between May 2001 and March 2011 were analyzed in a retrospective study. Of these patients, 29 (55.8%) had not undergone previous treatment and the remaining 23 (44.2%) patients had undergone prior resection of the tumor without oncological planning. All subsequent surgical procedures were performed at the same cancer referral center. The follow-up ranged from 6 to 122 months, with a mean of 39.89 months. Age, lesion size and depth, histological grade, surgical margins, overall survival, local and distant recurrence and adjuvant therapies were compared. RESULTS: Residual disease was observed in 91.3% of the re-resected specimens in the unplanned excision group, which exhibited greater numbers of superficial lesions, low histological grades and contaminated surgical margins compared with the re-resected specimens in the planned excision group. No differences were observed in local recurrence and 5-year overall survival between the groups, but distant metastases were significantly associated with planned excision after adjustment for the variables. CONCLUSIONS: There was no difference between patients undergoing unplanned excision and planned excision regarding local recurrence and overall survival. The planned excision group had a higher risk of distant metastasis, whereas there was a high rate of residual cancer in the unplanned excision group

    Behavioral responses of Diaphorina citri to host plant volatiles in multiple-choice olfactometers are affected in interpretable ways by effects of background colors and airflows

    Full text link
    [EN] In several phytophagous hemipterans, behavior appears to be mediated by both visual and chemical cues. For the Asian citrus psyllid (ACP)Diaphorina citri(Hemiptera: Liviidae), olfactometric assays are generally difficult to interpret owing to the low proportion of individuals responding to odors (similar to 30-40%), which compromises the efficiency and reliability of the results of behavioral tests. In the present study, the ACP behavioral response to emitted odors from sweet orange (Citrus sinensisL. Osbeck) flushes in a 4-arm olfactometer using different colors (four white-, two white- and two yellow- on opposite sides, or four yellow-colored fields), and the role of the airflow in the concentration of volatile organic compounds (VOCs) were assessed at two airflows [0.4 and 0.1 L/min (LPM)]. Exposure to 'Pera' sweet orange or clean air in treatments with four yellow-colored-fields increased the response rate of ACP females to the odor sources compared with exposure to 'Pera' sweet orange or clean air in treatments with four white-colored-fields, independently of the odor source and airflow tested. For the assays using two white- and two yellow-colored fields on opposite sides and 0.4 or 0.1 LPM airflow, the residence time of ACP females to odors ('Pera' sweet orange or clean air) was similar or higher in treatments using yellow- than those using white-colored fields. For both assays (VOCs and olfactometric behavioral parameters), the reduction in airflow from 0.4 to 0.1 LPM greatly changed the airborne concentration and ACP behavior. Quantitative chemical analyses revelead that the concentration of most compounds emitted by 'Pera' sweet orange flushes for the headspace using 0.1 LPM airflow were greater than the concentrations measured using 0.4 LPM airflow. Therefore, this treatment design provides an useful tool to assess the ACP behavioral response to the odors from citrus plants, and it can also help in the discrimination of dose-response screenings for VOCs or conspecific insects.Financial support was provided by Sao Paulo Research Foundation (FAPESP) 2015/07011-3 and 2017/21460-0. The authors thank Dr. Aquidauana Miqueloto Zanardi for her help in measuring the color spaces of the white and yellow reflective papers used to change the device color.Volpe, H.; Zanardi, O.; Magnani, R.; Luvizotto, R.; Esperança, V.; De Freitas, R.; Delfino, J.... (2020). Behavioral responses of Diaphorina citri to host plant volatiles in multiple-choice olfactometers are affected in interpretable ways by effects of background colors and airflows. PLoS ONE. 15(7):1-17. https://doi.org/10.1371/journal.pone.0235630S117157Grafton-Cardwell, E. E., Stelinski, L. L., & Stansly, P. A. (2013). Biology and Management of Asian Citrus Psyllid, Vector of the Huanglongbing Pathogens. Annual Review of Entomology, 58(1), 413-432. doi:10.1146/annurev-ento-120811-153542Tiwari, S., Mann, R. S., Rogers, M. E., & Stelinski, L. L. (2011). Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science, 67(10), 1258-1268. doi:10.1002/ps.2181Zanardi, O. Z., Bordini, G. P., Franco, A. A., de Morais, M. R., & Yamamoto, P. T. (2018). Spraying pyrethroid and neonicotinoid insecticides can induce outbreaks of Panonychus citri (Trombidiformes: Tetranychidae) in citrus groves. Experimental and Applied Acarology, 76(3), 339-354. doi:10.1007/s10493-018-0316-1Stockton, D. G., Martini, X., Patt, J. M., & Stelinski, L. L. (2016). The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri. PLOS ONE, 11(3), e0149815. doi:10.1371/journal.pone.0149815Knolhoff, L. M., & Heckel, D. G. (2014). Behavioral Assays for Studies of Host Plant Choice and Adaptation in Herbivorous Insects. Annual Review of Entomology, 59(1), 263-278. doi:10.1146/annurev-ento-011613-161945Döring, T. F., & Chittka, L. (2007). Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions, 1(1), 3-16. doi:10.1007/s11829-006-9000-1NISSINEN, A., KRISTOFFERSEN, L., & ANDERBRANT, O. (2008). Physiological state of female and light intensity affect the host-plant selection of carrot psyllid, Trioza apicalis (Hemiptera: Triozidae). European Journal of Entomology, 105(2), 227-232. doi:10.14411/eje.2008.032MOUND, L. A. (1962). STUDIES ON THE OLFACTION AND COLOUR SENSITIVITY OF BEMISIA TABACI (GENN.) (HOMOPTERA, ALEYRODIDAE). Entomologia Experimentalis et Applicata, 5(2), 99-104. doi:10.1111/j.1570-7458.1962.tb00571.xAntignus, Y., Mor, N., Ben Joseph, R., Lapidot, M., & Cohen, S. (1996). Ultraviolet-Absorbing Plastic Sheets Protect Crops from Insect Pests and from Virus Diseases Vectored by Insects. Environmental Entomology, 25(5), 919-924. doi:10.1093/ee/25.5.919Hall, D. G., Sétamou, M., & Mizell, R. F. (2010). A comparison of sticky traps for monitoring Asian citrus psyllid (Diaphorina citri Kuwayama). Crop Protection, 29(11), 1341-1346. doi:10.1016/j.cropro.2010.06.003Godfrey, K. E., Galindo, C., Patt, J. M., & Luque-Williams, M. (2013). Evaluation of Color and Scent Attractants Used to Trap and Detect Asian Ctirus Psyllid (Hemiptera: Liviidae) in Urban Environments. Florida Entomologist, 96(4), 1406-1416. doi:10.1653/024.096.0420Sétamou, M., Sanchez, A., Saldaña, R. R., Patt, J. M., & Summy, R. (2014). Visual Responses of Adult Asian Citrus Psyllid (Hemiptera: Liviidae) to Colored Sticky Traps on Citrus Trees. Journal of Insect Behavior, 27(4), 540-553. doi:10.1007/s10905-014-9448-2Miranda, M. P., Dos Santos, F. L., Felippe, M. R., Moreno, A., & Fereres, A. (2015). Effect of UV-Blocking Plastic Films on Take-Off and Host Plant Finding Ability of Diaphorina citri (Hemiptera: Liviidae). Journal of Economic Entomology, 108(1), 245-251. doi:10.1093/jee/tou036Paris, T. M., Croxton, S. D., Stansly, P. A., & Allan, S. A. (2015). Temporal response and attraction ofDiaphorina citrito visual stimuli. Entomologia Experimentalis et Applicata, 155(2), 137-147. doi:10.1111/eea.12294Patt, J. M., & Sétamou, M. (2010). Responses of the Asian Citrus Psyllid to Volatiles Emitted by the Flushing Shoots of Its Rutaceous Host Plants. Environmental Entomology, 39(2), 618-624. doi:10.1603/en09216Amorós, M. E., Pereira das Neves, V., Rivas, F., Buenahora, J., Martini, X., Stelinski, L. L., & Rossini, C. (2018). Response of Diaphorina citri (Hemiptera: Liviidae) to volatiles characteristic of preferred citrus hosts. Arthropod-Plant Interactions, 13(3), 367-374. doi:10.1007/s11829-018-9651-8George, J., Shi, Q., Stelinski, L. L., Stover, E., & Lapointe, S. L. (2019). Host Selection, Oviposition and Feeding by a Phytopathogen Vector, Diaphorina citri (Hemiptera: Liviidae), Modulated by Plant Exposure to Formic Acid. Frontiers in Ecology and Evolution, 7. doi:10.3389/fevo.2019.00078Pettersson, J. (1970). An Aphid Sex Attractant. Insect Systematics & Evolution, 1(1), 63-73. doi:10.1163/187631270x00357VET, L. E. M., LENTEREN, J. C. V., HEYMANS, M., & MEELIS, E. (1983). An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiological Entomology, 8(1), 97-106. doi:10.1111/j.1365-3032.1983.tb00338.xWenninger, E. J., Stelinski, L. L., & Hall, D. G. (2009). Roles of Olfactory Cues, Visual Cues, and Mating Status in Orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to Four Different Host Plants. Environmental Entomology, 38(1), 225-234. doi:10.1603/022.038.0128Onagbola, E. O., Rouseff, R. L., Smoot, J. M., & Stelinski, L. L. (2010). Guava leaf volatiles and dimethyl disulphide inhibit response of Diaphorina citri Kuwayama to host plant volatiles. Journal of Applied Entomology, 135(6), 404-414. doi:10.1111/j.1439-0418.2010.01565.xAlquézar, B., Volpe, H. X. L., Magnani, R. F., de Miranda, M. P., Santos, M. A., Wulff, N. A., … Peña, L. (2017). β-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Scientific Reports, 7(1). doi:10.1038/s41598-017-06119-wTomaseto, A. F., Miranda, M. P., Moral, R. A., de Lara, I. A. R., Fereres, A., & Lopes, J. R. S. (2017). Environmental conditions for Diaphorina citri Kuwayama (Hemiptera: Liviidae) take-off. Journal of Applied Entomology, 142(1-2), 104-113. doi:10.1111/jen.12418Wenninger, E. J., & Hall, D. G. (2007). Daily Timing of Mating and Age at Reproductive Maturity in Diaphorina citri (Hemiptera: Psyllidae). Florida Entomologist, 90(4), 715-722. doi:10.1653/0015-4040(2007)90[715:dtomaa]2.0.co;2Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591. doi:10.2307/2333709Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370. doi:10.2307/2344614Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6), 80. doi:10.2307/3001968Patt, J. M., Meikle, W. G., Mafra-Neto, A., Sétamou, M., Mangan, R., Yang, C., … Adamczyk, J. J. (2011). Multimodal Cues Drive Host-Plant Assessment in Asian Citrus Psyllid (Diaphorina citri). Environmental Entomology, 40(6), 1494-1502. doi:10.1603/en11149Todd, J. W., Kays, S. J., & Kays, S. E. (1977). A precision low-flow-rate air delivery system for use with olfactometers. Journal of Chemical Ecology, 3(5), 519-525. doi:10.1007/bf00989073Bruce, T. J. A., Wadhams, L. J., & Woodcock, C. M. (2005). Insect host location: a volatile situation. Trends in Plant Science, 10(6), 269-274. doi:10.1016/j.tplants.2005.04.003Bruce, T. J. A., & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects – Finding the right mix. Phytochemistry, 72(13), 1605-1611. doi:10.1016/j.phytochem.2011.04.01

    Soil cover plants on water erosion control in the South of Minas Gerais

    Get PDF
    Water erosion is responsible for soil, water, carbon and nutrient losses, turning into the most important type of degradation of Brazilian soils. This study aimed to evaluate the influence of three cover plants under two tillage systems on water erosion control in an Argisol at south of Minas Gerais state, Brazil. The cover plants utilized in the study were pigeon pea, jack bean and millet, under contour seeding and downslope tillage. Experimental plots of 4 x 12 m, with 9% slope, under natural rainfall were used for the quantification of losses of soil, water, nutrients, and organic matter. One experimental plot was kept without plant cover (reference). Higher erosivity was observed in December and January, although a great quantity of erosive rainfall was detected during the whole raining period. Contour seeding provided a greater reduction of water erosion than downslope tillage, as expected. The jack bean under contour seeding revealed the lowest values of soil, water, nutrients and organic matter losses

    On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which catalyze the oxidative cleavage of polysaccharides. LPMOs belonging to family 15 in the Auxiliary Activity (AA) class from the Carbohydrate-Active Enzyme database are found widespread across the Tree of Life, including viruses, algae, oomycetes and animals. Recently, two AA15s from the firebrat Thermobia domestica were reported to have oxidative activity, one towards cellulose or chitin and the other towards chitin, signalling that AA15 LPMOs from insects potentially have different biochemical functions. Herein, we report the identification and characterization of two family AA15 members from the lower termite Coptotermes gestroi. Addition of Cu(II) to CgAA15a or CgAA15b had a thermostabilizing effect on both. Using ascorbate and O2 as co-substrates, CgAA15a and CgAA15b were able to oxidize chitin, but showed no activity on celluloses, xylan, xyloglucan and starch. Structural models indicate that the LPMOs from C. gestroi (CgAA15a/CgAA15b) have a similar fold but exhibit key differences in the catalytic site residues when compared to the cellulose/chitin-active LPMO from T. domestica (TdAA15a), especially the presence of a non-coordinating phenylalanine nearby the Cu ion in CgAA15a/b, which appears as a tyrosine in the active site of TdAA15a. Despite the overall similarity in protein folds, however, mutation of the active site phenylalanine in CgAA15a to a tyrosine did not expanded the enzymatic specificity from chitin to cellulose. Our data show that CgAA15a/b enzymes are likely not involved in lignocellulose digestion but might play a role in termite developmental processes as well as on chitin and nitrogen metabolisms
    corecore