13 research outputs found

    Bulk ion heating with ICRH in JET DT plasmas

    Get PDF
    Reactor relevant ICRH scenarios have been assessed during DT experiments on the JET tokamak using H mode divertor discharges with ITER-like shapes and safety factors. Deuterium minority heating in tritium plasmas was demonstrated for the first time. For 9% deuterium, an ICRH power of 6 MW gave 1.66 MW of fusion power from reactions between suprathermal deuterons and thermal tritons. The Q value of the steady state discharge reached 0.22 for the length of the RF flat-top (2.7 s), corresponding to three plasma energy replacement times. The Doppler broadened neutron spectrum showed a deuteron energy of 125 keV, which was optimum for fusion and close to the critical energy. Thus, strong bulk ion heating was obtained at the same time as high fusion efficiency. Deuterium fractions around 20% produced the strongest ion heating together with a strong reduction of the suprathermal deuteron tail. The ELMs had low amplitude and high frequency and each ELM transported less plasma energy content than the 1% required by ITER. The energy confinement time, on the ITERH97-P scale, was 0.90, which is sufficient for ignition in ITER. 3He minority heating, in approximately 50:50 D:T plasmas with up to 10% 3He, also demonstrated strong bulk ion heating. Central ion temperatures up to 13 keV were achieved, together with central electron temperatures up to 12 keV. The normalized H mode confinement time was 0.95. Second harmonic tritium heating produced energetic tritons above the critical energy. This scheme heats the electrons in JET, unlike in ITER where the lower power density will allow mainly ion heating. The inverted scenario of tritium minority ICRH in a deuterium plasma was demonstrated as a successful heating method producing both suprathermal neutrons and bulk ion heating. Theoretical calculations of the DT reactivity mostly give excellent agreement with the measured reaction rates

    Relativistic allowed and forbidden transition probabilities for fluorine-like Fe XVIII

    Get PDF
    Energy levels and the corresponding transition probabilities for allowed and forbidden transitions among the levels of the ground configuration and first 23 excited configurations of fluorine-like Fe XVIII have been calculated using the multiconfigurational Dirac-Fock GRASP code. A total of 379 lowest bound levels of Fe XVIII is presented, and the energy levels are identified in spectroscopic notations. Transition probabilities, oscillator strengths and line strengths for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these 379 levels are also presented. The calculated energy levels and transition probabilities are compared with experimental data

    Symmetry tuning with megajoule laser pulses at the National Ignition Facility

    No full text
    Experiments conducted at the National Ignition Facility using shaped laser pulses with more than 1 MJ of energy have demonstrated the ability to control the implosion symmetry under ignition conditions. To achieve thermonuclear ignition, the low mode asymmetries must be small to minimize the size of the hotspot. The symmetry tuning experiments use symmetry capsules, “symcaps”, which replace the DT fuel with an equivalent mass of CH to emulate the hydrodynamic behavior of an ignition capsule. The x-ray self-emission signature from gas inside the capsule during the peak compression correlates with the surrounding hotspot shape. By tuning the shape of the self-emission, the capsule implosion symmetry can be made to be “round.” In the experimental results presented here, we utilized crossbeam energy transfer [S. H. Glenzer, et al., Science 327, 1228 (2010)] to change the ratio of the inner to outer cone power inside the hohlraum targets on the NIF. Variations in the ratio of the inner cone to outer cone power affect the radiation pattern incident on the capsule modifying the implosion symmetry
    corecore