209 research outputs found

    A Compact Beam Stop for a Rare Kaon Decay Experiment

    Get PDF
    We describe the development and testing of a novel beam stop for use in a rare kaon decay experiment at the Brookhaven AGS. The beam stop is located inside a dipole spectrometer magnet in close proximity to straw drift chambers and intercepts a high-intensity neutral hadron beam. The design process, involving both Monte Carlo simulations and beam tests of alternative beam-stop shielding arrangements, had the goal of minimizing the leakage of particles from the beam stop and the resulting hit rates in detectors, while preserving maximum acceptance for events of interest. The beam tests consisted of measurements of rates in drift chambers, scintilation counter hodoscopes, a gas threshold Cherenkov counter, and a lead glass array. Measurements were also made with a set of specialized detectors which were sensitive to low-energy neutrons, photons, and charged particles. Comparisons are made between these measurements and a detailed Monte Carlo simulation.Comment: 39 pages, 14 figures, submitted to Nuclear Instruments and Method

    A straw drift chamber spectrometer for studies of rare kaon decays

    Full text link
    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds

    NMR and Mossbauer study of spin dynamics and electronic structure of Fe{2+x}V{1-x}Al and Fe2VGa

    Get PDF
    In order to assess the magnetic ordering process in Fe2VAl and the related material Fe2VGa, we have carried out nuclear magnetic resonance (NMR) and Mossbauer studies. 27Al NMR relaxation measurements covered the temperature range 4 -- 500 K in Fe(2+x)V(1-x)Al samples. We found a peak in the NMR spin-lattice relaxation rate, 27T1^-1, corresponding to the magnetic transitions in each of these samples. These peaks appear at 125 K, 17 K, and 165 K for x = 0.10, 0, and - 0.05 respectively, and we connect these features with critical slowing down of the localized antisite defects. Mossbauer measurements for Fe2VAl and Fe2VGa showed lines with no hyperfine splitting, and isomer shifts nearly identical to those of the corresponding sites in Fe3Al and Fe3Ga, respectively. We show that a model in which local band filling leads to magnetic regions in the samples, in addition to the localized antisite defects, can account for the observed magnetic ordering behavior.Comment: 5 pages, 3 figure

    The PanCam Instrument for the ExoMars Rover

    Get PDF
    The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.publishersversionPeer reviewe

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)<1.0(1.2)×10−3, B(Z→D0γ)<4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)<3.1(3.0)×10−6

    Measurement of the VH,H → ττ process with the ATLAS detector at 13 TeV

    Get PDF
    A measurement of the Standard Model Higgs boson produced in association with a W or Z boson and decaying into a pair of τ-leptons is presented. This search is based on proton-proton collision data collected at √s = 13 TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 140 fb−1. For the Higgs boson candidate, only final states with at least one τ-lepton decaying hadronically (τ →hadrons + vτ ) are considered. For the vector bosons, only leptonic decay channels are considered: Z → ℓℓ and W → ℓvℓ, with ℓ = e, μ. An excess of events over the expected background is found with an observed (expected) significance of 4.2 (3.6) standard deviations, providing evidence of the Higgs boson produced in association with a vector boson and decaying into a pair of τ-leptons. The ratio of the measured cross-section to the Standard Model prediction is μττ VH = 1.28 +0.30 −0.29 (stat.) +0.25 −0.21 (syst.). This result represents the most accurate measurement of the VH(ττ) process achieved to date

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore