761 research outputs found

    Lattice dielectric response of CdCu{3}Ti{4}O{12} and of CaCu{3}Ti{4}O{12} from first principles

    Full text link
    Structural, vibrational, and lattice dielectric properties of CdCu{3}Ti{4}O{12} are studied using density-functional theory within the local spin-density approximation, and the results are compared with those computed previously for CaCu{3}Ti{4}O{12}. Replacing Ca with Cd is found to leave many calculated quantities largely unaltered, although significant differences do emerge in zone-center optical phonon frequencies and mode effective charges. The computed phonon frequencies of CdCu{3}Ti{4}O{12} are found to be in excellent agreement with experiment, and the computed lattice contribution to the intrinsic static dielectric constant (~60) also agrees exceptionally well with a recent optical absorption experiment. These results provide further support for a picture in which the lattice dielectric response is essentially conventional, suggesting an extrinsic origin for the anomalous low-frequency dielectric response recently observed in both materials.Comment: 5 pages; uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_cdct/index.htm

    Off Equilibrium Study of the Fluctuation-Dissipation Relation in the Easy-Axis Heisenberg Antiferromagnet on the Kagome Lattice

    Full text link
    Violation of the fluctuation-dissipation theorem (FDT) in a frustrated Heisenberg model on the Kagome lattice is investigated using Monte Carlo simulations. The model exhibits glassy behaviour at low temperatures accompanied by very slow dynamics. Both the spin-spin autocorrelation function and the response to an external magnetic field are studied. Clear evidence of a constant value of the fluctuation dissipation ratio and long range memory effects are observed for the first time in this model. The breakdown of the FDT in the glassy phase follows the predictions of the mean field theory for spin glasses with one-step replica symmetry breaking.Comment: 4 pages, 4 figure

    Lattice Study of the Decay B^0-bar -> rho^+ l^- nu_l-bar: Model-Independent Determination of |V_{ub}|

    Full text link
    We present results of a lattice computation of the vector and axial-vector current matrix elements relevant for the semileptonic decay B^0-bar -> rho^+ l^- nu_l-bar. The computations are performed in the quenched approximation of lattice QCD on a 24^3 x 48 lattice at beta = 6.2, using an O(a) improved fermionic action. Our principal result is for the differential decay rate, dGamma/dq^2, for the decay B^0-bar -> rho^+ l^- nu_l-bar in a region beyond the charm threshold, allowing a model-independent extraction of |V_{ub}| from experimental measurements. Heavy quark symmetry relations between radiative and semileptonic decays of B-bar mesons into light vector mesons are also discussed.Comment: 22 pages LaTeX-209 (dependent on settings in a4.sty), 23 PostScript figures included with epsf.sty. Complete PostScript file including figures available at http://wwwhep.phys.soton.ac.uk/hepwww/papers/shep9518

    Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction

    Full text link
    High real-space-resolution atomic pair distribution functions of La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using high-energy x-ray powder diffraction to study the size and shape of the MnO_6 octahedron as a function of temperature and doping. In the paramagnetic insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95 and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and T=20K, we find a single Mn-O bond-length; however, as the metal-insulator transition is approached either by increasing T or decreasing x, intensity progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong evidence that charge localized and delocalized phases coexist close to the metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.

    Comparison of S=0 and S=1/2 Impurities in Haldane Chain Compound, Y2BaNiO5Y_{2}BaNiO_{5}

    Full text link
    We present the effect of Zn (S=0) and Cu (S=1/2) substitution at the Ni site of S=1 Haldane chain compound Y2BaNiO5Y_{2}BaNiO_{5}. 89^{89}Y NMR allows us to measure the local magnetic susceptibility at different distances from the defects. The 89^{89}Y NMR spectrum consists of one central peak and several less intense satellite peaks. The shift of the central peak measures the uniform susceptibility, which displays a Haldane gap DeltaDeltaequivequiv100 K and it corresponds to an AF coupling Jequivequiv260 K between the near-neighbor Ni spins. Zn or Cu substitution does not affect the Haldane gap. The satellites, which are evenly distributed on the two sides of the central peak, probe the antiferromagnetic staggered magnetization near the substituted site, which decays exponentially. Its extension is found identical for both impurities and corresponds accurately to the correlation length xixi(T) determined by Monte Carlo (QMC) simulations for the pure compound. In the case of non-magnetic Zn, the temperature dependence of the induced magnetization is consistent with a Curie law with an "effective" spin S=0.4 on each side of Zn, which is well accounted by Quantum Monte Carlo computations of the spinless-defect-induced magnetism. In the case of magnetic Cu, the similarity of the induced magnetism to the Zn case implies a weak coupling of the Cu spin to the nearest- neighbor Ni spins. The slight reductionin the induced polarization with respect to Zn is reproduced by QMC computations by considering an antiferromagnetic coupling of strength J'=0.1-0.2 J between the S=1/2 Cu-spin and nearest-neighbor Ni-spin.Comment: 15 pages, 18 figures, submitted to Physical Review

    Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12

    Get PDF
    The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and x-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T, showing a minor but significant dependence of the dielectric constant on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.Comment: 10 pages, 11 figure

    Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry

    Full text link
    In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic beta-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity - its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945 C down to 25 C and found the couplings, which undergo the antiferromagnetic-ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
    corecore