210 research outputs found

    Studies of Mass and Size Effects in Three-Dimensional Vibrofluidized Granular Mixtures

    Full text link
    We examine the steady state properties of binary systems of driven inelastic hard spheres. The spheres, which move under the influence of gravity, are contained in a vertical cylinder with a vibrating base. We computed the trajectories of the spheres using an event-driven molecular dynamics algorithm. In the first part of the study, we chose simulation parameters that match those of experiments performed by Wildman and Parker. Various properties computed from the simulation including the density profile, granular temperature and circulation pattern are in good qualitative agreement with the experiments. We then studied the effect of varying the mass ratio and the size ratio independently while holding the other parameters constant. The mass and size ratio are shown to affect the distribution of the energy. The changes in the energy distributions affect the packing fraction and temperature of each component. The temperature of the heavier component has a non-linear dependence on the mass of the lighter component, while the temperature of the lighter component is approximately proportional to its mass. The temperature of both components is inversely dependent on the size of the smaller component.Comment: 14 Pages, 12 Figures, RevTeX

    Radio Observations of the January 20, 2005 X-Class Event

    Full text link
    We present a multi-frequency and multi-instrument study of the 20 January 2005 event. We focus mainly on the complex radio signatures and their association with the active phenomena taking place: flares, CMEs, particle acceleration and magnetic restructuring. As a variety of energetic particle accelerators and sources of radio bursts are present, in the flare-ejecta combination, we investigate their relative importance in the progress of this event. The dynamic spectra of {Artemis-IV-Wind/Waves-Hiras with 2000 MHz-20 kHz frequency coverage, were used to track the evolution of the event from the low corona to the interplanetary space; these were supplemented with SXR, HXR and gamma-ray recordings. The observations were compared with the expected radio signatures and energetic-particle populations envisaged by the {Standard Flare--CME model and the reconnection outflow termination shock model. A proper combination of these mechanisms seems to provide an adequate model for the interpretation of the observational data.Comment: Accepted for publication in Solar Physic

    Higher Dimensional Dark Energy Investigation with Variable Λ\Lambda and GG

    Full text link
    Time variable Λ\Lambda and GG are studied here under a phenomenological model of Λ\Lambda through an (n+2n+2) dimensional analysis. The relation of Zeldovich (1968) Λ=8πG2mp6/h4|\Lambda| = 8\pi G^2m_p^6/h^4 between Λ\Lambda and GG is employed here, where mpm_p is the proton mass and hh is Planck's constant. In the present investigation some key issues of modern cosmology, viz. the age problem, the amount of variation of GG and the nature of expansion of the Universe have been addressed.Comment: 7 Latex pages with few change

    A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the J/ψ\rm{J/\psi} and $\Upsilon

    Full text link
    The shapes of the inclusive photon spectra in the processes \Jp \to \gamma X and \Up \to \gamma X have been analysed using all available experimental data. Relativistic, higher order QCD and gluon mass corrections were taken into account in the fitted functions. Only on including the gluon mass corrections, were consistent and acceptable fits obtained. Values of 0.7210.068+0.0160.721^{+0.016}_{-0.068} GeV and 1.180.29+0.091.18^{+0.09}_{-0.29} GeV were found for the effective gluon masses (corresponding to Born level diagrams) for the \Jp and \Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to \gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine αs(1.5GeV)\alpha_s(1.5 {\rm GeV}) and αs(4.9GeV)\alpha_s(4.9 {\rm GeV}). Values consistent with the current world average αs\alpha_s were obtained only when gluon mass correction factors, calculated using the fitted values of the effective gluon mass, were applied. A gluon mass 1\simeq 1 GeV, as suggested with these results, is consistent with previous analytical theoretical calculations and independent phenomenological estimates, as well as with a recent, more accurate, lattice calculation of the gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table

    A structural MRI study in monozygotic twins concordant or discordant for attention/hyperactivity problems: Evidence for genetic and environmental heterogeneity in the developing brain.

    Get PDF
    Several structural brain abnormalities have been reported in patients with Attention Deficit Hyperactivity Disorder (ADHD). However, the etiology of these brain changes is still unclear. To investigate genetic and environmental influences on ADHD related neurobiological changes, we performed Voxel-Based Morphometry on MRI scans from monozygotic (MZ) twins selected from a large longitudinal population database to be highly concordant or highly discordant for ratings on the Child Behavior Checklist Attention Problem scale (CBCL-AP). Children scoring low on the CBCL-AP are at low risk for ADHD, whereas children scoring high on this scale are at high-risk for ADHD. Brain differences between concordant high-risk twin pairs and concordant low-risk twin pairs likely reflect the genetic risk for ADHD; brain differences between the low-risk and high-risk twins from discordant MZ twin pairs reflect the environmental risk for ADHD. A major difference between comparisons of high and low-risk twins from concordant pairs and high/low twins from discordant pairs was found for the prefrontal lobes. The concordant high-risk pairs showed volume loss in orbitofrontal subdivisions. High-risk members from the discordant twin pairs exhibited volume reduction in the right inferior dorsolateral prefontal cortex. In addition, the posterior corpus callosum was compromised in concordant high-risk pairs, only. Our findings indicate that inattention and hyperactivity symptoms are associated with anatomical abnormalities of a distributed action-attentional network. Different brain areas of this network appear to be affected in inattention/hyperactivity caused by genetic (i.e., high concordant MZ pairs) vs. environmental (i.e., high-low discordant MZ pairs) risk factors. These results provide clues that further our understanding of brain alterations in ADHD. © 2007 Elsevier Inc. All rights reserved

    Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment

    Get PDF
    Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fibroblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fibroblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectified by drug treatment

    The structure of the Yang-Mills spectrum for arbitrary simple gauge algebras

    Full text link
    The mass spectrum of pure Yang-Mills theory in 3+1 dimensions is discussed for an arbitrary simple gauge algebra within a quasigluon picture. The general structure of the low-lying gluelump and two-quasigluon glueball spectrum is shown to be common to all algebras, while the lightest C=C=- three-quasigluon glueballs only exist when the gauge algebra is Ar2_{r\geq 2}, that is in particular su(N3)\mathfrak{su}(N\geq3). Higher-lying C=C=- glueballs are shown to exist only for the Ar2_{r\geq2}, Doddr4_{{\rm odd}-r\geq 4} and E6_6 gauge algebras. The shape of the static energy between adjoint sources is also discussed assuming the Casimir scaling hypothesis and a funnel form; it appears to be gauge-algebra dependent when at least three sources are considered. As a main result, the present framework's predictions are shown to be consistent with available lattice data in the particular case of an su(N)\mathfrak{su}(N) gauge algebra within 't Hooft's large-NN limit.Comment: 21 pages, 4 figures; remarks added, typos corrected in v2. v3 to appear in EPJ

    Large-Scale Neighbor-Joining with NINJA

    Full text link
    Abstract Neighbor-joining is a well-established hierarchical clustering algorithm for inferring phylogenies. It begins with observed distances between pairs of sequences, and clustering order depends on a metric related to those distances. The canonical algorithm requires O(n3) time and O(n2) space for n sequences, which precludes application to very large sequence families, e.g. those containing 100,000 sequences. Datasets of this size are available today, and such phylogenies will play an increasingly important role in comparative genomics studies. Recent algorithmic advances have greatly sped up neighbor-joining for inputs of thousands of sequences, but are limited to fewer than 13,000 sequences on a system with 4GB RAM. In this paper, I describe an algorithm that speeds up neighbor-joining by dramatically reducing the number of distance values that are viewed in each iteration of the clustering procedure, while still computing a correct neighbor-joining tree. This algorithm can scale to inputs larger than 100,000 sequences because of external-memory-efficient data structures. A free implementation may by obtained fro
    corecore