127 research outputs found

    A Compact Gas Cerenkov Detector with Novel Optics

    Get PDF
    We discuss the design and performance of a threshold Cerenkov counter for identification of charged hadrons. The radiator is pressurized gas, which is contained in thin-walled cylindrical modules. A mirror system of novel design transports Cerenkov photons to photomultiplier tubes. This system is compact, contains relatively little material, and has a large fraction of active volume. A prototype of a module designed for the proposed CLEO III detector has been studied using cosmic rays. Results from these studies show good agreement with a detailed Monte Carlo simulation of the module and indicate that it should achieve separation of pions and kaons at the 2.5-3.0sigma level in the momentum range 0.8-2.8 GeV/c. We predict performance for specific physics analyses using a GEANT-based simulation package.Comment: Submitted to NIM. 23 pages, 11 postscript figures. Postscript file is also available at http://w4.lns.cornell.edu/public/CLNS/199

    Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions

    Full text link
    The hopping motion of lattice gases through potentials without mirror-reflection symmetry is investigated under various bias conditions. The model of 2 particles on a ring with 4 sites is solved explicitly; the resulting current in a sawtooth potential is discussed. The current of lattice gases in extended systems consisting of periodic repetitions of segments with sawtooth potentials is studied for different concentrations and values of the bias. Rectification effects are observed, similar to the single-particle case. A mean-field approximation for the current in the case of strong bias acting against the highest barriers in the system is made and compared with numerical simulations. The particle-vacancy symmetry of the model is discussed.Comment: 8 pages (incl. 6 eps figures); RevTeX 3.

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    Quantum Dimensional Zeeman Effect in the Magneto-optical Absorption Spectrum for Quantum Dot - Impurity Center Systems

    Get PDF
    Magneto-optical properties of the quantum dot - impurity center (QD-IC) systems synthesized in a transparent dielectric matrix are considered. For the QD one-electron state description the parabolic model of the confinement potential is used. Within the framework of zero-range potential model and the effective mass approach, the light impurity absorption coefficient for the case of transversal polarization with respect to the applied magnetic field direction, with consideration of the QD size dispersion, has been analytically calculated. It is shown that for the case of transversal polarization the light impurity absorption spectrum is characterized by the quantum dimensional Zeeman effect.Comment: 18 pages, 1 figure, PDF fil

    Search for the Decay τ−→4pi−3π+(π0)ντ\tau^{-}\to 4pi^{-}3\pi^{+}(\pi^{0})\nu_{\tau}

    Full text link
    We have searched for the decay of the tau lepton into seven charged particles and zero or one pi0. The data used in the search were collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR) and correspond to an integrated luminosity of 4.61 fb^(-1). No evidence for a signal is found. Assuming all the charged particles are pions, we set an upper limit on the branching fraction, B(tau- -> 4pi- 3pi+ (pi0) nu_tau) < 2.4 x 10^(-6) at the 90% confidence level. This limit represents a significant improvement over the previous limit.Comment: 9 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Toward a theory of restraint

    Full text link
    Consumption largely remains a black box in the population, environment, and global change debates. The dominant perspective takes insatiability as axiomatic and assumes that reduced consumption will only happen through scarcity or the impositions of external authority. Yet humans often exhibit resource limiting behavior that is not the result of external controls nor is it altruistic or aberrant. This article develops the concept of restraint as an evolutionarily and culturally significant behavior, yet one that in modern times has been relegated to a regressive, if not trivial, status. The article defines restraint, hypothesizes its historical and evolutionary roots, lays out the conditions under which it can occur, and develops a theoretical parallel to cooperation in international relations theory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43491/1/11111_2005_Article_BF02208422.pd

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
    • …
    corecore