We discuss the design and performance of a threshold Cerenkov counter for
identification of charged hadrons. The radiator is pressurized gas, which is
contained in thin-walled cylindrical modules. A mirror system of novel design
transports Cerenkov photons to photomultiplier tubes. This system is compact,
contains relatively little material, and has a large fraction of active volume.
A prototype of a module designed for the proposed CLEO III detector has been
studied using cosmic rays. Results from these studies show good agreement with
a detailed Monte Carlo simulation of the module and indicate that it should
achieve separation of pions and kaons at the 2.5-3.0sigma level in the momentum
range 0.8-2.8 GeV/c. We predict performance for specific physics analyses using
a GEANT-based simulation package.Comment: Submitted to NIM. 23 pages, 11 postscript figures. Postscript file is
also available at http://w4.lns.cornell.edu/public/CLNS/199