The hopping motion of lattice gases through potentials without
mirror-reflection symmetry is investigated under various bias conditions. The
model of 2 particles on a ring with 4 sites is solved explicitly; the resulting
current in a sawtooth potential is discussed. The current of lattice gases in
extended systems consisting of periodic repetitions of segments with sawtooth
potentials is studied for different concentrations and values of the bias.
Rectification effects are observed, similar to the single-particle case. A
mean-field approximation for the current in the case of strong bias acting
against the highest barriers in the system is made and compared with numerical
simulations. The particle-vacancy symmetry of the model is discussed.Comment: 8 pages (incl. 6 eps figures); RevTeX 3.