592 research outputs found

    The Jacobi Polynomials QCD analysis for the polarized structure function

    Full text link
    We present the results of our QCD analysis for polarized quark distribution and structure function xg1(x,Q2)xg_1 (x,Q^2). We use very recently experimental data to parameterize our model. New parameterizations are derived for the quark and gluon distributions for the kinematic range xϵ[10−8,1]x \epsilon [10^{-8},1], Q2ϵ[1,106]Q^2 \epsilon [1,10^6] GeV^2. The analysis is based on the Jacobi polynomials expansion of the polarized structure functions. Our calculations for polarized parton distribution functions based on the Jacobi polynomials method are in good agreement with the other theoretical models. The values of ΛQCD\Lambda_{QCD} and αs(Mz)\alpha_s(M_z) are determined.Comment: 23 pages, 8 figures and 4 table

    Heart of Darkness: The Significance of the Zeptobarn Scale for Neutralino Direct Detection

    Full text link
    The direct detection of dark matter through its elastic scattering off nucleons is among the most promising methods for establishing the particle identity of dark matter. The current bound on the spin-independent scattering cross section is sigma^SI < 10 zb for dark matter masses m_chi ~ 100 GeV, with improved sensitivities expected soon. We examine the implications of this progress for neutralino dark matter. We work in a supersymmetric framework well-suited to dark matter studies that is simple and transparent, with models defined in terms of four weak-scale parameters. We first show that robust constraints on electric dipole moments motivate large sfermion masses mtilde > 1 TeV, effectively decoupling squarks and sleptons from neutralino dark matter phenomenology. In this case, we find characteristic cross sections in the narrow range 1 zb 70 GeV. As sfermion masses are lowered to near their experimental limit mtilde ~ 400 GeV, the upper and lower limits of this range are extended, but only by factors of around two, and the lower limit is not significantly altered by relaxing many particle physics assumptions, varying the strange quark content of the nucleon, including the effects of galactic small-scale structure, or assuming other components of dark matter. Experiments are therefore rapidly entering the heart of dark matter-favored supersymmetry parameter space. If no signal is seen, supersymmetric models must contain some level of fine-tuning, and we identify and analyze several possibilities. Barring large cancellations, however, in a large and generic class of models, if thermal relic neutralinos are a significant component of dark matter, experiments will discover them as they probe down to the zeptobarn scale.Comment: 35 pages, 11 figures; v2: references added, figures extended to 2 TeV neutralino masses, XENON100 results included, published versio

    Electromagnetic proton form factors in large NcN_{c} QCD

    Full text link
    The electromagnetic form factors of the proton are obtained using a particular realization of QCD in the large NcN_c limit (QCD∞{QCD}_{\infty}), which sums up the infinite number of zero-width resonances to yield an Euler's Beta function (Dual-QCD∞{QCD}_{\infty}). The form factors F1(q2)F_1(q^2) and F2(q2)F_2(q^2), as well as GM(q2)G_M(q^2) agree very well with reanalyzed space-like data in the whole range of momentum transfer. In addition, the predicted ratio μpGE/GM\mu_p G_E/G_M is in good agreement with recent polarization transfer measurements at Jefferson Lab.Comment: 10 page

    The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

    Full text link
    Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.Comment: 30 pages, 12 figures, 6 tables, minor correction

    Signatures of photon and axion-like particle mixing in the gamma-ray burst jet

    Get PDF
    Photons couple to Axion-Like Particles (ALPs) or more generally to any pseudo Nambu-Goldstone boson in the presence of an external electromagnetic field. Mixing between photons and ALPs in the strong magnetic field of a Gamma-Ray Burst (GRB) jet during the prompt emission phase can leave observable imprints on the gamma-ray polarization and spectrum. Mixing in the intergalactic medium is not expected to modify these signatures for ALP mass > 10^(-14) eV and/or for < nG magnetic field. We show that the depletion of photons due to conversion to ALPs changes the linear degree of polarization from the values predicted by the synchrotron model of gamma ray emission. We also show that when the magnetic field orientation in the propagation region is perpendicular to the field orientation in the production region, the observed synchrotron spectrum becomes steeper than the theoretical prediction and as detected in a sizable fraction of GRB sample. Detection of the correlated polarization and spectral signatures from these steep-spectrum GRBs by gamma-ray polarimeters can be a very powerful probe to discover ALPs. Measurement of gamma-ray polarization from GRBs in general, with high statistics, can also be useful to search for ALPs.Comment: 17 pages, 3 figures. Accepted for publication in JCAP with minor change

    Spin Structure of the Pion in a Light-Cone Representation

    Full text link
    The spin structure of the pion is discussed by transforming the wave function for the pion in the naive quark model into a light-cone representation. It is shown that there are higher helicity (λ1+λ2=±1\lambda_{1}+\lambda_{2}=\pm1) states in the full light-cone wave function for the pion besides the ordinary helicity (λ1+λ2=0\lambda_{1}+\lambda_{2}=0) component wave functions as a consequence from the Melosh rotation relating spin states in light-front dynamics and those in instant-form dynamics. Some low energy properties of the pion, such as the electromagnetic form factor, the charged mean square radius, and the weak decay constant, could be interrelated in this representation with reasonable parameters.Comment: 15 Latex pages, 2 figures upon reques

    Neutrino oscillations in magnetically driven supernova explosions

    Full text link
    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large theta_(13), we show that survival probabilities of electron type neutrinos and antineutrinos seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of electron type antineutrinos observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which leads to a noticeable decrease in the electron type neutrino signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the electron type antineutrinos and neutrinos signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.Comment: 25 pages, 21 figures, JCAP in pres

    Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD

    Full text link
    We consider a new approach towards constructing approximate holographic duals of QCD from experimental hadron properties. This framework allows us to derive a gravity dual which reproduces the empirically found linear square-mass trajectories of universal slope for radially and orbitally excited hadrons. Conformal symmetry breaking in the bulk is exclusively due to infrared deformations of the anti-de Sitter metric and governed by one free mass scale proportional to Lambda_QCD. The resulting background geometry exhibits dual signatures of confinement and provides the first examples of holographically generated linear trajectories in the baryon sector. The predictions for the light hadron spectrum include new relations between trajectory slopes and ground state masses and are in good overall agreement with experiment.Comment: 33 pages, 5 figures, updated to the extended version published in JHEP, vector meson bulk potential and metric corrected, comments and references added, phenomenology and conclusions unchange

    Natural T cell–mediated protection against seasonal and pandemic Influenza: results of the Flu Watch cohort study

    Get PDF
    Rationale: A high proportion of influenza infections are asymptomatic. Animal and human challenge studies and observational studies suggest T cells protect against disease among those infected, but the impact of T-cell immunity at the population level is unknown. Objectives: To investigate whether naturally preexisting T-cell responses targeting highly conserved internal influenza proteins could provide cross-protective immunity against pandemic and seasonal influenza. Methods: We quantified influenza A(H3N2) virus–specific T cells in a population cohort during seasonal and pandemic periods between 2006 and 2010. Follow-up included paired serology, symptom reporting, and polymerase chain reaction (PCR) investigation of symptomatic cases. Measurements and Main Results: A total of 1,414 unvaccinated individuals had baseline T-cell measurements (1,703 participant observation sets). T-cell responses to A(H3N2) virus nucleoprotein (NP) dominated and strongly cross-reacted with A(H1N1)pdm09 NP (P < 0.001) in participants lacking antibody to A(H1N1)pdm09. Comparison of paired preseason and post-season sera (1,431 sets) showed 205 (14%) had evidence of infection based on fourfold influenza antibody titer rises. The presence of NP-specific T cells before exposure to virus correlated with less symptomatic, PCR-positive influenza A (overall adjusted odds ratio, 0.27; 95% confidence interval, 0.11–0.68; P = 0.005, during pandemic [P = 0.047] and seasonal [P = 0.049] periods). Protection was independent of baseline antibodies. Influenza-specific T-cell responses were detected in 43%, indicating a substantial population impact. Conclusions: Naturally occurring cross-protective T-cell immunity protects against symptomatic PCR-confirmed disease in those with evidence of infection and helps to explain why many infections do not cause symptoms. Vaccines stimulating T cells may provide important cross-protective immunity
    • …
    corecore