329 research outputs found

    Kosteneffectiviteit voor milieuthema's

    Get PDF
    Deze studie presenteert een overzicht van de effecten en kosten van technische maatregelen om emissies te reduceren van de milieuthema’s Verspreiding, Verzuring, Vermesting, Verdroging en Bodemverontreiniging. Per thema zijn de maatregelen gerangschikt naar kosteneffectiviteit en is een kosteneffectiviteitscurve geconstrueerd. De curves geven per thema aan tegen welke kosten mogelijke maatregelen geimplementeerd kunnen worde

    Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy

    Get PDF
    Objective: To develop a deep learning algorithm for anatomy recognition in thoracoscopic video frames from robot-assisted minimally invasive esophagectomy (RAMIE) procedures using deep learning. Background: RAMIE is a complex operation with substantial perioperative morbidity and a considerable learning curve. Automatic anatomy recognition may improve surgical orientation and recognition of anatomical structures and might contribute to reducing morbidity or learning curves. Studies regarding anatomy recognition in complex surgical procedures are currently lacking. Methods: Eighty-three videos of consecutive RAMIE procedures between 2018 and 2022 were retrospectively collected at University Medical Center Utrecht. A surgical PhD candidate and an expert surgeon annotated the azygos vein and vena cava, aorta, and right lung on 1050 thoracoscopic frames. 850 frames were used for training of a convolutional neural network (CNN) to segment the anatomical structures. The remaining 200 frames of the dataset were used for testing the CNN. The Dice and 95% Hausdorff distance (95HD) were calculated to assess algorithm accuracy. Results: The median Dice of the algorithm was 0.79 (IQR = 0.20) for segmentation of the azygos vein and/or vena cava. A median Dice coefficient of 0.74 (IQR = 0.86) and 0.89 (IQR = 0.30) were obtained for segmentation of the aorta and lung, respectively. Inference time was 0.026 s (39 Hz). The prediction of the deep learning algorithm was compared with the expert surgeon annotations, showing an accuracy measured in median Dice of 0.70 (IQR = 0.19), 0.88 (IQR = 0.07), and 0.90 (0.10) for the vena cava and/or azygos vein, aorta, and lung, respectively. Conclusion: This study shows that deep learning-based semantic segmentation has potential for anatomy recognition in RAMIE video frames. The inference time of the algorithm facilitated real-time anatomy recognition. Clinical applicability should be assessed in prospective clinical studies.</p

    Thermodynamics of Black Holes in Two (and Higher) Dimensions

    Get PDF
    A comprehensive treatment of black hole thermodynamics in two-dimensional dilaton gravity is presented. We derive an improved action for these theories and construct the Euclidean path integral. An essentially unique boundary counterterm renders the improved action finite on-shell, and its variational properties guarantee that the path integral has a well-defined semi-classical limit. We give a detailed discussion of the canonical ensemble described by the Euclidean partition function, and examine various issues related to stability. Numerous examples are provided, including black hole backgrounds that appear in two dimensional solutions of string theory. We show that the Exact String Black Hole is one of the rare cases that admits a consistent thermodynamics without the need for an external thermal reservoir. Our approach can also be applied to certain higher-dimensional black holes, such as Schwarzschild-AdS, Reissner-Nordstrom, and BTZ.Comment: 63 pages, 3 pdf figures, v2: added reference

    Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the Microstates

    Full text link
    Logarithmic corrections to the extremal black hole entropy can be computed purely in terms of the low energy data -- the spectrum of massless fields and their interaction. The demand of reproducing these corrections provides a strong constraint on any microscopic theory of quantum gravity that attempts to explain the black hole entropy. Using quantum entropy function formalism we compute logarithmic corrections to the entropy of half BPS black holes in N=2 supersymmetric string theories. Our results allow us to test various proposals for the measure in the OSV formula, and we find agreement with the measure proposed by Denef and Moore if we assume their result to be valid at weak topological string coupling. Our analysis also gives the logarithmic corrections to the entropy of extremal Reissner-Nordstrom black holes in ordinary Einstein-Maxwell theory.Comment: LaTeX file, 66 page

    Mouse model for the DNA repair/basal transcription disorder Trichothiodystrophy reveals cancer predisposition.

    Get PDF
    Patients with the nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) are highly predisposed to develop sunlight-induced skin cancer, in remarkable contrast to photosensitive NER-deficient trichothiodystrophy (TTD) patients carrying mutations in the same XPD gene. XPD encodes a helicase subunit of the dually functional DNA repair/basal transcription complex TFIIH. The pleiotropic disease phenotype is hypothesized to be, in part, derived from a repair defect causing UV sensitivity and, in part, from a subtle, viable basal transcription deficiency accounting for the cutaneous, developmental, and the typical brittle hair features of TTD. To understand the relationship between deficient NER and tumor susceptibility, we used a mouse model for TTD that mimics an XPD point mutation of a TTD patient in the mouse germline. Like the fibroblasts from the patient, mouse cells exhibit a partial NER defect, evident from the reduced UV-induced DNA repair synthesis (residual repair capacity approximately 25%), limited recovery of RNA synthesis after UV exposure, and a relatively mild hypersensitivity to cell killing by UV or 7,12-dimethylbenz[a]anthracene. In accordance with the cellular studies, TTD mice exhibit a modestly increased sensitivity to UV-induced inflammation and hyperplasia of the skin. In striking contrast to the human syndrome, TTD mice manifest a dear susceptibility to UV- and 7,12-dimethylbenz[a]anthracene-induced skin carcinogenesis, albeit not as pronounced as the totally NER-deficient XPA mice. These findings open up the possibility that TTD is associated with a so far unnoticed cancer predisposition and support the notion that a NER deficiency enhances cancer susceptibility. These findings have important implications for the etiology of the human disorder and for the impact of NER on carcinogenesis

    Off-Diagonal Elements of the DeWitt Expansion from the Quantum Mechanical Path Integral

    Full text link
    The DeWitt expansion of the matrix element M_{xy} = \left\langle x \right| \exp -[\case{1}{2} (p-A)^2 + V]t \left| y \right\rangle, (p=i)(p=-i\partial) in powers of tt can be made in a number of ways. For x=yx=y (the case of interest when doing one-loop calculations) numerous approaches have been employed to determine this expansion to very high order; when xyx \neq y (relevant for doing calculations beyond one-loop) there appear to be but two examples of performing the DeWitt expansion. In this paper we compute the off-diagonal elements of the DeWitt expansion coefficients using the Fock-Schwinger gauge. Our technique is based on representing MxyM_{xy} by a quantum mechanical path integral. We also generalize our method to the case of curved space, allowing us to determine the DeWitt expansion of \tilde M_{xy} = \langle x| \exp \case{1}{2} [\case{1}{\sqrt {g}} (\partial_\mu - i A_\mu)g^{\mu\nu}{\sqrt{g}}(\partial_\nu - i A_\nu) ] t| y \rangle by use of normal coordinates. By comparison with results for the DeWitt expansion of this matrix element obtained by the iterative solution of the diffusion equation, the relative merit of different approaches to the representation of M~xy\tilde M_{xy} as a quantum mechanical path integral can be assessed. Furthermore, the exact dependence of M~xy\tilde M_{xy} on some geometric scalars can be determined. In two appendices, we discuss boundary effects in the one-dimensional quantum mechanical path integral, and the curved space generalization of the Fock-Schwinger gauge.Comment: 16pp, REVTeX. One additional appendix concerning end-point effects for finite proper-time intervals; inclusion of these effects seem to make our results consistent with those from explicit heat-kernel method

    Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications

    No full text
    The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early / mid Pleistocene. The mid Pleistocene transition marks a stepwise minimum 7 degree northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a “900 ka event” that saw major cooling of the oceans and a ?13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the subtropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the Mid-Pleistocene Transition. The cooling that initiated the “900 ka event” may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the Mid-Pleistocene Transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession

    A Unified Algebraic Approach to Few and Many-Body Correlated Systems

    Full text link
    The present article is an extended version of the paper {\it Phys. Rev.} {\bf B 59}, R2490 (1999), where, we have established the equivalence of the Calogero-Sutherland model to decoupled oscillators. Here, we first employ the same approach for finding the eigenstates of a large class of Hamiltonians, dealing with correlated systems. A number of few and many-body interacting models are studied and the relationship between their respective Hilbert spaces, with that of oscillators, is found. This connection is then used to obtain the spectrum generating algebras for these systems and make an algebraic statement about correlated systems. The procedure to generate new solvable interacting models is outlined. We then point out the inadequacies of the present technique and make use of a novel method for solving linear differential equations to diagonalize the Sutherland model and establish a precise connection between this correlated system's wave functions, with those of the free particles on a circle. In the process, we obtain a new expression for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having Laughlin wave function as the ground-state and point out the natural emergence of the underlying linear W1+W_{1+\infty} symmetry in this approach.Comment: 18 pages, Revtex format, To appear in Physical Review
    corecore