1,517 research outputs found

    Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order

    Full text link
    Using effective field theory techniques we calculate the source multipole moments needed to obtain the spin contributions to the power radiated in gravitational waves from inspiralling compact binaries to third Post-Newtonian order (3PN). The multipoles depend linearly and quadratically on the spins and include both spin(1)spin(2) and spin(1)spin(1) components. The results in this paper provide the last missing ingredient required to determine the phase evolution to 3PN including all spin effects which we will report in a separate paper.Comment: 35 pages, 7 figures. Published versio

    Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order

    Get PDF
    Using the NRGR effective field theory formalism we calculate the remaining source multipole moments necessary to obtain the spin contributions to the gravitational wave amplitude to 2.5 Post-Newtonian (PN) order. We also reproduce the tail contribution to the waveform linear in spin at 2.5PN arising from the nonlinear interaction between the current quadrupole and the mass monopole.Comment: 17 pages, 4 figures. v2 Minor changes, to appear in JCA

    Virtual Black Holes

    Get PDF
    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2S^2\times S^2 and K3K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2S^2\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix $\$ that does not factorise into an SS matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.Comment: 24p, LaTeX, 3 postscript figures included with epsf sent in a seperate uuencoded fil

    A fully integrated GIS-based model of particulate waste distribution from marine fish-cage sites

    Get PDF
    Modern Geographical Information System (GIS) offers a powerful modelling environment capable of handling large databases. It is a very suitable environment in which to develop a suite of tools designed for environmental management of aquaculture sites, including carrying capacity prediction, land–water interactions and multi-site effects. One such tool, presented here, is a fully integrated and validated particulate fish waste dispersion module which uses mass balance to estimate waste input and takes account of variable bathymetry and variable settling velocity for feed and faecal components. The model also incorporates the effect of cage movement on waste dispersion, the first such model to do so. When tidal range was low (1.67 m), the maximum movement of a 22 m diameter circular cage was 10.1 m and 7.7 m easting and northing, respectively. Highest deposition from particulate fish waste is under the cage and incorporation of cage movement increased the effective area under a cage by 72%. This reduced peak deposition measurements by up to 32% and reduced the average modelled feed and faecal settlement at the cage centre by 23% and 11%, respectively. The model was validated by comparing model predictions with observed deposition measured using sediment traps during three 2-week field trips at a fish farm on the west coast of Scotland. The mean ratio of observed to predicted waste deposition at 5–25 m from the cage centre ranged from 0.9 to 1.06, whilst under the cage the model over-predicts deposition (observed/predicted=2.21). Although far-field data was seen to be comparable the near-field discrepancies resulted in variable overall accuracy in the model. The overall accuracy based on August 2001 data was ±50.9%, on February 2002, ±72.8% and on April 2002, ±50.6%. Summarizing the data resulted in an overall average predictive accuracy of ±58.1%. © 2006 Elsevier B.V. All rights reserved

    Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system

    Get PDF
    We present a systematic numerical design and performance study of an ultra-broadband noncollinear optical parametric chirped pulse amplification (NOPCPA) system. Using a split-step Fourier approach, we model a three-stage amplifier system which is designed for the generation of 7 fs pulses with multi-terawatt peak intensity. The numerical results are compared with recent experimental data. Several important aspects and design parameters specific to NOPCPA are identified, and the values of these parameters required to achieve optimal working conditions are investigated. We identify and analyze wavelength-dependent gain saturation effects, which are specific to NOPCPA and have a strong influence on the parametric amplification process. © Springer-Verlag 2007

    Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron

    Full text link
    We present 90% confidence level limits on magnetic monopole production at the Fermilab Tevatron from three sets of samples obtained from the D0 and CDF detectors each exposed to a proton-antiproton luminosity of 175pb1\sim175 {pb}^{-1} (experiment E-882). Limits are obtained for the production cross-sections and masses for low-mass accelerator-produced pointlike Dirac monopoles trapped and bound in material surrounding the D0 and CDF collision regions. In the absence of a complete quantum field theory of magnetic charge, we estimate these limits on the basis of a Drell-Yan model. These results (for magnetic charge values of 1, 2, 3, and 6 times the minimum Dirac charge) extend and improve previously published bounds.Comment: 18 pages, 17 figures, REVTeX

    Dynamics of liquid He-4 in confined geometries from Time-Dependent Density Functional calculations

    Full text link
    We present numerical results obtained from Time-Dependent Density Functional calculations of the dynamics of liquid He-4 in different environments characterized by geometrical confinement. The time-dependent density profile and velocity field of He-4 are obtained by means of direct numerical integration of the non-linear Schrodinger equation associated with a phenomenological energy functional which describes accurately both the static and dynamic properties of bulk liquid He-4. Our implementation allows for a general solution in 3-D (i.e. no symmetries are assumed in order to simplify the calculations). We apply our method to study the real-time dynamics of pure and alkali-doped clusters, of a monolayer film on a weakly attractive surface and a nano-droplet spreading on a solid surface.Comment: q 1 tex file + 9 Ps figure

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Sorafenib for the treatment of advanced hepatocellular cancer – a UK audit

    Get PDF
    Aims: Sorafenib is the current standard treatment for advanced hepatocellular carcinoma. We carried out a national audit of UK patients treated with sorafenib as standard-of-care and those treated with systemic therapy in first-line trials. Materials and methods: Sorafenib-treated and trial-treated patients were identified via the Cancer Drugs Fund and local databases. Data were collected retrospectively from medical records according to a standard case report form. The primary outcome measure was overall survival, estimated by the Kaplan–Meier method. Results: Data were obtained for 448 sorafenib-treated patients from 15 hospitals. The median age was 68 years (range 17–89) and 75% had performance status ≤ 1. At baseline, 77% were Child-Pugh A and 16.1% Child-Pugh B; 38% were albumin–bilirubin grade 1 (ALBI-1) and 48% ALBI-2; 23% were Barcelona Clinic Liver Classification B (BCLC-B) and 72% BCLC-C. The median time on sorafenib was 3.6 months, with a mean daily dose of 590 mg. The median overall survival for 448 evaluable sorafenib-treated patients was 8.5 months. There were significant differences in overall survival comparing Child-Pugh A versus Child-Pugh B (9.5 versus 4.6 months), ALBI-1 versus ALBI-2 (12.9 versus 5.9 months) and BCLC-B versus BCLC-C (13.0 versus 8.3 months). For trial-treated patients (n = 109), the median overall survival was 8.1 months and this was not significantly different from the sorafenib-treated patients. Conclusion: For Child-Pugh A patients with good performance status, survival outcomes were similar to those reported in global randomised controlled trials. Patients with ALBI grade > 1, Child-Pugh B or poor performance status seem to derive limited benefit from sorafenib treatment
    corecore