128 research outputs found

    Josephson current in unconventional superconductors through an Anderson impurity

    Full text link
    Josephson current for a system consisting of an Anderson impurity weakly coupled to two unconventional superconductors is studied and shown to be driven by a surface zero energy (mid-gap) bound-state. The repulsive Coulomb interaction in the dot can turn a π\pi junction into a 0-junction. This effect is more pronounced in p-wave superconductors while in high-temperature superconductors with dx2y2d_{x^2-y^2} symmetry it can exit for rather large artificial centers at which tunneling occurs within a finite region.Comment: 4 pages 3.eps figure

    Disappearance of Ensemble-Averaged Josephson Current in Dirty SNS Junctions of d-wave Superconductors

    Full text link
    We discuss the Josephson current in superconductor / dirty normal conductor / superconductor junctions, where the superconductors have dx2y2d_{x^2-y^2} pairing symmetry. The low-temperature behavior of the Josephson current depends on the orientation angle between the crystalline axis and the normal of the junction interface. We show that the ensemble-averaged Josephson current vanishes when the orientation angle is π/4\pi/4 and the normal conductor is in the diffusive transport regime. The dx2y2d_{x^2-y^2}-wave pairing symmetry is responsible for this fact.Comment: 8 pages, 5 figure

    Hard gluon damping in hot QCD

    Full text link
    The gluon collisional width in hot QCD plasmas is discussed with emphasis on temperatures near TcT_c, where the coupling is large. Considering its effect on the entropy, which is known from lattice calculations, it is argued that the width, which in the perturbative limit is given by γg2ln(1/g)T\gamma \sim g^2 \ln(1/g) T, should be sizeable at intermediate temperatures but has to be small close to TcT_c. Implications of these results for several phenomenologically relevant quantities, such as the energy loss of hard jets, are pointed out.Comment: uses RevTex and graphic

    DC Josephson Effect in SNS Junctions of Anisotropic Superconductors

    Full text link
    A formula for the Josephson current between two superconductors with anisotropic pairing symmetries is derived based on the mean-field theory of superconductivity. Zero-energy states formed at the junction interfaces is one of basic phenomena in anisotropic superconductor junctions. In the obtained formula, effects of the zero-energy states on the Josephson current are taken into account through the Andreev reflection coefficients of a quasiparticle. In low temperature regimes, the formula can describe an anomaly in the Josephson current which is a direct consequence of the exsitence of zero-energy states. It is possible to apply the formula to junctions consist of superconductors with spin-singlet Cooper pairs and those with spin-triplet Cooper pairs

    The long-time dynamics of two hydrodynamically-coupled swimming cells

    Get PDF
    Swimming micro-organisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead to change in the relative position and orientation of the swimmers. We perform a multiple-scale analysis and derive the effective dynamical system - of dimension two - describing the long-time behavior of the pair of cells. We show that the system displays one type of equilibrium, and two types of rotational equilibrium, all of which are found to be unstable. A detailed mathematical analysis of the dynamical systems further allows us to show that only two cell-cell behaviors are possible in the limit of tt\to\infty, either the cells are attracted to each other (possibly monotonically), or they are repelled (possibly monotonically as well), which we confirm with numerical computations

    Quasiclassical description of transport through superconducting contacts

    Full text link
    We present a theoretical study of transport properties through superconducting contacts based on a new formulation of boundary conditions that mimics interfaces for the quasiclassical theory of superconductivity. These boundary conditions are based on a description of an interface in terms of a simple Hamiltonian. We show how this Hamiltonian description is incorporated into quasiclassical theory via a T-matrix equation by integrating out irrelevant energy scales right at the onset. The resulting boundary conditions reproduce results obtained by conventional quasiclassical boundary conditions, or by boundary conditions based on the scattering approach. This formalism is well suited for the analysis of magnetically active interfaces as well as for calculating time-dependent properties such as the current-voltage characteristics or as current fluctuations in junctions with arbitrary transmission and bias voltage. This approach is illustrated with the calculation of Josephson currents through a variety of superconducting junctions ranging from conventional to d-wave superconductors, and to the analysis of supercurrent through a ferromagnetic nanoparticle. The calculation of the current-voltage characteristics and of noise is applied to the case of a contact between two d-wave superconductors. In particular, we discuss the use of shot noise for the measurement of charge transferred in a multiple Andreev reflection in d-wave superconductors

    Nonlinear σ\sigma model for disordered superconductors

    Get PDF
    We suggest a novel nonlinear σ\sigma-model for the description of disordered superconductors. The main distinction from existing models lies in the fact that the saddle point equation is solved non-perturbatively in the superconducting pairing field. It allows one to use the model both in the vicinity of the metal-superconductor transition and well below its critical temperature with full account for the self-consistency conditions. We show that the model reproduces a set of known results in different limiting cases, and apply it for a self-consistent description of the proximity effect at the superconductor-metal interface.Comment: Revised version, 8 pages, 1 fig., revtex; final version, as published, contains a few corrections in the summar

    Critical behavior of the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy

    Full text link
    We study the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy. We compute and analyze the fixed-dimension perturbative expansion of the renormalization-group functions to four loops. The relations of these models with N-color Ashkin-Teller models, discrete cubic models, planar model with fourth order anisotropy, and structural phase transition in adsorbed monolayers are discussed. Our results for N=2 (XY model with cubic anisotropy) are compatible with the existence of a line of fixed points joining the Ising and the O(2) fixed points. Along this line the exponent η\eta has the constant value 1/4, while the exponent ν\nu runs in a continuous and monotonic way from 1 to \infty (from Ising to O(2)). For N\geq 3 we find a cubic fixed point in the region u,v0u, v \geq 0, which is marginally stable or unstable according to the sign of the perturbation. For the physical relevant case of N=3 we find the exponents η=0.17(8)\eta=0.17(8) and ν=1.3(3)\nu=1.3(3) at the cubic transition.Comment: 14 pages, 9 figure

    A model for a large investor trading at market indifference prices. I: single-period case

    Get PDF
    We develop a single-period model for a large economic agent who trades with market makers at their utility indifference prices. A key role is played by a pair of conjugate saddle functions associated with the description of Pareto optimal allocations in terms of the utility function of a representative market maker.Comment: Shorten from 69 to 30 pages due to referees' requests; a part of the previous version has been moved to "The stochastic field of aggregate utilities and its saddle conjugate", arXiv:1310.728
    corecore