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Nonlinear s model for disordered superconductors
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We suggest a variant of the nonlinears model for the description of disordered superconductors. The main
distinction from existing models lies in the fact that the saddle point equation is solved nonperturbatively in the
superconducting pairing field. It allows one to use the model both in the vicinity of the metal-superconductor
transition and well below its critical temperature with full account for the self-consistency conditions. We show
that the model reproduces a set of known results in different limiting cases, and apply it for a self-consistent
description of the proximity effect at the superconductor-metal interface.
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I. INTRODUCTION

Since a seminal paper by Wegner,1 a field-theoretic ap-
proach to disordered systems based on the nonlinears model
(NLsM) became one of the most powerful tools in descr
ing localization effects and mesoscopic fluctuations. T
main advantage of this approach lies in formulating
theory in terms of low-lying excitations~diffusion modes!,
which greatly simplifies perturbative and renormalizati
group calculations and, on the other hand, allows a non
turbative treatment.

Such an approach has been successfully extended to
description of disordered superconductors.2–4 It was based
on the fermionic representation5 of Wegner’s NLsM ex-
tended to include the electron-electron interaction.6 The
starting point in these works2–4 was a microscopic model o
interacting electrons in a random potential. The effect
NLsM includes an extra bosonic field describing the sup
conducting order parameterD. Then the lowest-order expan
sion in D is used. This makes such an approach a g
working tool in the vicinity of the superconducting transitio
where all the interaction channels can be easily inclu
which makes it very useful in describing different aspects
the metal-superconducting transitions.

An alternative approach to the NLsM for dirty
superconductors7–10 starts from the Bogoliubov–de Genne
equations~or, equivalently, Gorkov’s equations! without im-
posing a self-consistency condition on the superconduc
order parameterD which is considered as given. Then th
initial many-body problem turns into a single-particle o
which makes applicable powerful techniques based on
supersymmetric NLsM.11 Such a supersymmetric approa
has been recently developed in Ref. 10 and applied to
description of nonperturbative aspects of the proximity eff
in superconducting–normal-metal structures. In this
proachD was taken into account just by the boundary co
ditions ~Andreev reflection! for the normal region. A natura
disadvantage of this~and any supersymmetric! approach is
that no interaction can be included beyond the mean-fi
approximation; thus it is impossible to describe an effect
the superconducting order parameter of disorder in the
mal metal~or even inside the superconducting region!.

A NLsM developed in this paper starts from a micr
scopic model of electrons in a random potential with BC
0163-1829/2001/63~6!/064522~8!/$15.00 63 0645
-
e
e

r-

the

e
-

d

d
f

g

e

e
t
-
-

ld
n
r-

attraction, and the order parameterD is treated as a dynami
cal field, similar to the earlier developed microscop
approach.2–4 We are using the standard fermionic repli
approach5 in temperature techniques.6 For a long time, it was
widely believed that such an approach cannot be used
nonperturbative analysis. However, it was recen
shown12,13 that this is not the case, since the well-know
exact nonperturbative result was reproduced from the fer
onic replica NLsM, as well as more recently14 with the
Keldysh technique.

In the initial approach6 to interactions within the NLsM,
a saddle-point approximation was identical to that of t
noninteracting problem. This scheme was recently gre
improved15 by choosing~within the Keldysh technique! the
saddle point, taking account of the interaction which cons
erably simplified any further analysis. Such an analysis
been directly extended to dirty superconductors in Ref.
We consider a model where, for simplicity, the Coulom
repulsion is not included. A distinctive feature of our a
proach is a change of the saddle point~and of a subsequen
initial approximation! in the presence of the superconducti
order parameter. This is similar but not identical to t
choice suggested in Ref. 15~when applied to the Coulomb
interaction, it would lead to a different variant of th
NLsM). The NLsM ~Ref. 15! is optimized to maximally
simplify the lowest perturbational order while by sacrificin
this we arrive at quite a general formulation of the mod
with different specific approximations being made for diffe
ent applications.

As usual, we restrict our consideration to the limit of dir
superconductors whenD!1/tel!«F ~or, equivalently,vFtel
!j where tel is the elastic mean free time, andj is the
correlation length is dirty superconductors!. After describing
in detail an alternative saddle-point approximation, we sh
how the model reproduces a set of known results in differ
limiting cases, and apply it for a self-consistent descript
of the proximity effect at the superconductor-metal interfa

II. BASIC MODEL

We consider the standard BCS Hamiltonian in the pr
ence of a random potentialu(r ). For completeness, we sta
by outlining the standard procedure2 of a field-theoretic rep-
resentation in the temperature technique for this Ham
©2001 The American Physical Society22-1
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I. V. YURKEVICH AND IGOR V. LERNER PHYSICAL REVIEW B63 064522
tonian. The corresponding action has the form

S5S01Si , ~1a!

S05E dx cs* ~x!F ]

]t
1 ĵ1u~r !Gcs~x!, ~1b!

Si5l0E dx c↑* ~x!c↓* ~x!c↓~x!c↑~x!. ~1c!

Herecs(x) is a Grassmannian field17,5 antiperiodic in imagi-
nary timet with period 1/T, x[(r ,t), s5(↑,↓) is the spin
index,l0 is the BCS coupling constant, and from now on w
set\51.

The random potentialu(r ) is supposed to be Gaussia
with zero mean and the standard pair correlator,

^u~r !u~r 8!&5
1

2pntel
d~r2r 8!, ~2!

with n being the density of states andtel the elastic mean
free time. The operatorĵ in Eq. ~1b! is defined as

ĵ5
1

2m S 2 i¹2
e

c
AD 2

2m,

whereA is a vector potential of an external magnetic fiel
Averaging overu with the help of the standard replic

trick gives the quartic inc term in the action. Using the
Hubbard-Stratonovich transformation, one decouples b
this term and the BCS term, Eq.~1c!, the former with the
help of a matrix fieldŝ5ŝ(r ;t,t8) and the latter with the
help of a pairing fieldD5D(r ;t), which will eventually play
the role of the order parameter. This results in the follow
effective action:

S@ŝ,D,C#5
pn

8tel
Tr ŝ21

1

l0E d xuD~x!u21E d x C̄~x!

3F2 t̂3
tr ]

]t
2 ĵ1

i

2tel
ŝ1 i D̂GC~x!. ~3!

Here the replicated Grassmannian fields are

C̄[~CC!T5
1

A2
~csi* ,2csi!, CT5

1

A2
~csi ,csi* !,

wherei 51, . . . ,N are the replica indices (N50 in the final
results!. The standard doubling of these fields (c→C) is
convenient to separate diffuson and Cooperon channels
electrons propagating in the random potential;C is the charge
conjugating matrix defined by the above equation. The m
trix fields ŝ and D̂ are defined in the space spanned byC

^ C̄ which is convenient to think of as a direct product
the N3N replica sector, 232 spin sector, and 232 ‘‘time-
reversal’’ sector. The fieldŝ is defined by its symmetries,

ŝ†5ŝ, ŝ5CŝTC 21, ~4!
06452
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and Tr in Eq.~3! refers to a summation over all the matr
indices, an integration overr , and a double integration overt

~as ŝ is not diagonal int).
The field D̂ is an Hermitian and self-charge-conjuga

matrix field, which is diagonal in the replica indices an
coordinatesr and t, and has the following structure in th
spin and time-reversal space:

D̂52~D8t̂2
tr1D9t̂1

tr! ^ t̂2
sp, ~5!

whereD8 andD9 are real and imaginary parts of the~scalar!
pairing field D; t̂ i

tr and t̂ i
sp are Pauli matrices (i 50,1,2,3

with t̂051) that span the time-reversal and spin sectors,
spectively.

The integral over electron degrees of freedom is p
formed in a usual way, so that one reduces the effec
action~in the Matsubara-frequency representation! to the fol-
lowing form:

S5
pn

8tel
Tr s21

1

Tl0
(
v

E dr uDv~r !u2

2
1

2
Tr lnF2 ĵ1

i

2tel
s1 i ~ ê1D̂ !G . ~6!

Hereê5diagen , while en5p(2n11)T is the fermionic fre-
quency andv5e2e8 is the bosonic one. SinceD is diago-
nal in the imaginary timet, it is a matrix field in the Mat-
subara frequencies.

The action~6! is a standard starting point for a furthe
field-theoretic analysis. To construct a working model, o
needs to expand in some way the Tr ln term in Eq.~6!. Our
goal here is to derive a field-theoretic model which is fu
self-consistent in terms of the superconducting order par
eterD and does not use a small-D expansion. We restrict ou
considerations to the limit of dirty superconductors whenD
!1/tel!«F . Otherwise, we do not impose any limitations o
D, and will derive the model applicable both in the vicini
of the transition and deeply in the superconducting regim

III. SADDLE POINT

Our starting point is to construct a saddle-point appro
mation to the action~6! in the presence of the fieldD̂. As
usual, we vary the action with respect to the fields which
gives

s~r !5 K rUF2 ĵ1
i

2tel
s1 i ~ ê1D̂ !G21Ur L . ~7!

As 1/tel is much greater than both temperatureT and the
order parameterD, the matrixê1D̂ plays the role of a sym-
metry breaking field. We look for a solution in a way simila
to that in the metallic phase where such a role is played
the matrix ê alone. In the metallic phase, the saddle-po
equation witheÞ0 has a unique solutionŝ5L, whereL is
diagonal ine and unit in the replica and spin sectors:

L5diag$sgne%. ~8!
2-2
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NONLINEAR s MODEL FOR DISORDERED SUPERCONDUCTORS PHYSICAL REVIEW B 63 064522
For e50 a degenerate solution to the saddle-point equa
is given by any matrixŝ of the symmetry~4! obeying the
condition s251. Such a matrix can be represented asŝ
5U†LU, with U belonging to an appropriate symmet
group.18

Similarly, a solution to Eq.~7! in the presence ofê1D̂ is
given by

ŝs.p.5VD
† LVD , ~9!

whereVD is the matrix that simultaneously diagonalizes bo
ŝ and ê1D̂. This means that it should be found togeth
with the yet unknown eigenvaluesl5diagle from

ê1D̂5VD
† lVD . ~10!

Naturally, one expectsVD to become a unit matrix above th
superconducting transition temperatureTc .

Assuming that both fieldsD(r) ands(r) are smooth func-
tions of r and looking for a spatially independent solution
Eq. ~7! ~i.e., ignoring at this stage the fact thatĵ andVD do
not commute!, one substitutes expressions~9! and ~10! into
Eq. ~7!, thus reducing it to

s5 K rUF2 ĵ1
i

2tel
L1 ilG21Ur L . ~11!

The scale ofl is defined bye;T and D which are both
!1/tel in a dirty superconductor. Thus it is easy to veri
that the saddle point is given by Eq.~9! with the eigenvalues
L, Eq. ~8!, being not affected by the presence of superc
ductivity. Let us stress that this saddle point is obtained b
nonperturbative inD rotation~9! of the metallic saddle poin
L. This should lead to an effective functional valid anywhe
in the superconducting phase rather than only in the vicin
of Tc .

Such an effective functional which includes fluctuatio
around the saddle point is obtained in the standard w
First, one constructs a saddle-point manifold of matricess
obeying the saddle-point equation atl50, and then one ex
pands the Tr ln term in Eq.~6! in both the symmetry break
ing term l and gradients of the fieldsV. The saddle-point
manifold is convenient to represent as follows:

s5VD
† QVD , Q5U†LU, ~12!

whereQ represents the saddle-point manifold in the meta
phase ands is obtained fromQ by the same rotation~9! as
ss.p. is obtained from the metallic saddle pointL. Therefore,
Q is defined, as in the metallic phase, on the coset sp
S(2N)/S(N) ^ S(N) where, depending on the symmetry,S
represents the unitary, orthogonal, or symplectic group.
fore describing the expansion, let us stress that one c
expand the Tr ln term without making the rotation~12!, i.e.,
in powers of¹s and ofe1D. Although this would be for-
mally an expansion within the same manifold, performi
first the rotation~12! simplifies enormously all the subse
quent considerations and leads to a new variant of the n
linear s model.
06452
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After substituting Eq.~12! into Eq. ~6!, one obtains the
following representation for the Tr ln term:

dS52 1
2 Tr ln$Ĝ0

211VD@ĵ,VD
† #2 i ~UlU†!%,

where

Ĝ0[S ĵ2
i

2tel
L D 21

.

The expansion to the lowest powers of gradients andl is
easily performed and results after some straightforward
culations in the following action:

S5
1

Tl0
(
v

E dr uDvu21
pn

2
TrFD

4
~]Q!22lQG ,

~13!

where Tr refers to a summation over all the matrix indic
and Matsubara frequencies, as well as to an integration o
r. The long derivative in Eq.~13! is defined as

]Q[¹Q1FAD2
ie

c
A t̂3

tr ,QG[]0Q1@AD ,Q#, ~14!

where the matrixAD is given by

AD5VD]0VD
† , ~15!

and]0 is the long derivative~14! in the absence of the pair
ing field D. Both VD andl should be found from the diago
nalization ofe1D, Eq. ~10!. Although such a diagonaliza
tion cannot be done in general, it will be straightforward
many important limiting cases. ForD50, the fieldAD van-
ishes,]→]0 andl→e, so that the functional~13! goes over
to that of the standard nonlinears model for noninteracting
electrons.

The s model defined by Eqs.~13!–~15! is fully self-
consistent, and the value of the superconducting order
rameter can be found from it for any temperature and geo
etry ~i.e., with a proper account of the proximity effect
where applicable!. The self-consistency condition would ea
ily follow from variation of the action~13! with respect toD
and finding the optimal configuration for the fields. How
ever, it is convenient to impose the self-consistency requ
ment only at the very end of the calculations. Any physic
observable is then to be found by calculating an appropr
functional average with the functional~13!–~15!.

We proceed with illustrating how the model reproduc
basic fundamental results for dirty superconductors, th
demonstrate how to include consistently weak localizat
corrections in the vicinity of the superconducting transiti
in the presence of a magnetic field, and finally show how
take into account the self-consistency of the order param
in the description of the proximity effect in theSNSgeom-
etry.

IV. SIMPLEST APPROXIMATION

We show that the basic results for dirty superconduct
can be reproduced in the simplest approximation:~i! we ne-
2-3
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I. V. YURKEVICH AND IGOR V. LERNER PHYSICAL REVIEW B63 064522
glect all nonzero Matsubara harmonics of the pairing fie
i.e., substituteD̂0de,2e8 for D̂ee8 ; ~ii ! we neglect disorder-
induced fluctuations near the saddle point, i.e., substitute
saddle-point valueQ5Le . In this case, the matrixê1D

reduces to direct product over all integern of ( ên1D̂0)
^ ( ên2D̂0) where

ên1D̂0[S en D0

D0* 2en
D . ~16!

HereD05uDueix is a two-component field which, naturally
plays the role of the order parameter~we omit the index 0 in
uDu). Now it is easy to find explicitly the eigenvaluesl and
the diagonalizing matrixVD in Eq. ~10!:

le5Aen
21uDu2 sgnen , cosue[en /le ,

VnD~r !5cos
ue

2
1 d̂ sgnen sin

ue

2
, ~17!

whered̂[(D̂0 /uDu)de,2e8 is the 434 matrix which depends
only on the phasex of the field D0 and repeats the matri
structure ofD̂0, Eq. ~5!, and the full matrixVD is the direct
product of allVnD .

On utilizing the assumption~ii ! above, i.e.,Q5L, and
substituting the parametrization~17! into Eq. ~13!, we arrive
at the actionS[*ddr L with

L5
uDu2

l0T
22pn(

e
Ae21uDu21dL,

dL[
pnD

2 (
e

F ~¹ue!
21sin2ueS ¹x2

2e

c
AD 2G . ~18!

Using the parametrization~17! one can easily sum overe to
get

dL5
pnD

8T H C1~¹uDu!21C2S ¹x2
2e

c
AD 2J , ~19!

where the stiffness coefficientsC1,2 are given by

C15
1

uDu
tanh

uDu
2T

1
1

2T
cosh22

uDu
2T

,

C252uDutanh
uDu
2T

. ~20!

The functional~19!–~20! coincides with that obtained in Re
9. Expanding coefficientsC1,2 in D, one obtains the
Ginzburg-Landau functional as that in Ref. 9. However,
simplest approximation used here~and equivalent to those o
which earlier considerations7–9 were based! is not sufficient
even in describing the vicinity of the superconducting tra
sition. In general, one must keep all the Matsubara com
nents of the pairing fields. In the following section, we w
show how to do this in the vicinity of the transition in th
weak disorder limit.
06452
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V. GINZBURG-LANDAU FUNCTIONAL

In the vicinity of the superconducting transition one c
expand the action~13! in the pairing field. A further simpli-
fication is possible in the weak disorder limitpFl @1: one
can integrate out theQ field to obtain an effective action fo
theD field only. In the quadratic in theD approximation, the
kernel of this action will give an effective matrix propagat
of the pairing field, with due account for the disorder, whi
governs properties of a disordered superconducting sam
near the transition.

To integrate over theQ field, one splits the action~13!
into S[S01SD where

S052
pnD

8
Tr~]0Q!22

pn

2
Tr eQ ~21!

is the standard nonlinears model functional as in the metal
lic phase. Then one makes a cumulant expansion, i.e.,
expandse2(S01SD) in powers ofSD , then performs the func-
tional averaging withe2S0 ~denoted below bŷ•••&Q), and
finally reexponentiates the results. The expansion invol
only the first- and second-order cumulants since the high
order cumulants generate terms of higher order inD. Then
the only terms which contribute to the action quadratic inD
are given by

Seff@D#5
1

l0T (
v

E dr uDvu22
pn

2
^Tr~l2e!Q&Q

2 K pnD

8
Tr@AD ,Q#2

1
~pnD !2

8
~Tr Q]0Q AD!2L

Q

. ~22!

Expandingl andAD to the lowest power inD and perform-
ing a standard functional averaging, as described in the
pendix, one finds the action quadratic inD as follows:

Seff@D#5
n

T (
v

E dr Dv* ~r !^r uK̂vur 8&Dv~r 8!, ~23!

with the operatorK̂v given by

K̂v5
1

l0n
22pT (

e(v2e),0
H P̂v

c 1
1

pn

P u2e2vu
d ~0!Ĉ

~2e2v!2 J .

~24!

HereP uvu
c,d(r ,r 8)5^r uP̂c,dur 8& are the Cooperon and diffuso

propagators, respectively, with

P̂ uvu
c 5~ Ĉ1uvu!21, ~25!

where the operatorĈ[2D(¹22ieA/c)2 defines the propa-

gation of the Cooperon modes;P̂d is obtained fromP̂c by
putting A50.
2-4



-
fu

h

e
T
n

of
o
p

te
e

is

e

e
th

es
ec-
a

ds a
c-

a-
e

at-
uld
p-

the

pend
on

n
or
e of
ded
su-
a
ifi-

-
l
the
ac-
r-
u-

he

s

ion

ro-
e
der
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In the last term in Eq.~24!, P uvu
d (0)[P uvu

d (r ,r ); this term
may be obtained by expanding~in the weak disorder param
eter! the Cooperon propagator with the renormalized dif
sion coefficient,

Ĉ→F12
1

pn
P uvu

d ~0!G Ĉ.

Therefore, this is just a weak localization correction to t
free Cooperon propagatorP uvu

c (r ,r 8).
The summation over Matsubara frequencies in Eq.~24! is

easily performed to yield

K̂v5 ln
T

T0
1cS 1

2
1

uvu2 Ĉ
4pT

D 2cS 1

2
D 2

avĈ
4pT

, ~26!

where T0[Tc0(B50) is the transition temperature of th
clean superconductor in the absence of a magnetic field.
weak localization correction is proportional to the coefficie
av given by

av~T!5
1

pnV (
q

1

Dq2 H c8S 1

2
1

uvu
4pTD

2
4pT

Dq2 FcS 1

2
1

uvu1Dq2

4pT D 2cS 1

2
1

uvu
4pTD G J .

For v50 the coefficienta0[av50(T) can be simplified in
the two limits:

a055
c8~1/2!

pnLd (
LT

21
,q, l 21

1

Dq2
, L@LT ,

2
c9~1/2!

8p2nLdT
, L!LT ,

~27!

whereLT[AD/T is the thermal smearing length.
The instability of the normal state~i.e., a transition to the

superconducting state! occurs when the lowest eigenvalue
the operatorK̂v becomes negative. The eigenfunctions
this operator coincide with the eigenfunctions of the Coo

eron operatorĈ. The lowest eigenvalue ofĈ is known to be
C05DB/f0, wheref0 is the flux quanta. This ground-sta
Cooperon eigenfunction corresponds to the lowest eig
valueK0 of the operatorK̂v . The conditionK050 implic-
itly defines the lineTc(B) in the (T,B) plane where the
transition occurs:

ln
Tc

T0
1cS 1

2
1

C0

4pTc
D2cS 1

2D5
a0C0

4pTc
. ~28!

The term on the right-hand side~RHS! of Eq. ~28! describes
a 1/g correction to the main result. This weak localization
linear in the magnetic fieldB and vanishes asB→0 as ex-
pected~Anderson theorem!. In a nonzero magnetic field th
weak localization correction to theBc is positive which has a
very simple explanation. The superconductivity is destroy
by the magnetic field when the flux over the area with
06452
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linear size of the order of the coherence length becom
greater than the flux quanta. The weak localization corr
tions diminish the diffusion coefficient, which leads to
shrinkage of the coherence length. Therefore, one nee
stronger field to fulfill the condition of coherence destru
tion. The same reasoning explains the growth ofTc in the
fixed magnetic field.

Note finally that we have calculated theQ averages in Eq.
~22! perturbatively, up to the first order in the weak localiz
tion correction. It would be straightforward to include th
main weak localization corrections in all orders by calcul
ing these averages via the renormalization group. This wo
lead to renormalizing the diffusion coefficient in the Coo
eron propagator~25!, thus changing the shape of theTc(B)
curve. However, the value ofTc(0) will again remain unaf-
fected, since the superconducting instability is defined by
appearance of the zero mode in the operatorK̂, Eq. ~26!.
This zero mode is homogeneous, and thus does not de
on the value of the diffusion coefficient in the Cooper
propagator.

VI. PROXIMITY EFFECT

A recent supersymmetric version10 of the NLsM has been
specifically formulated for studying the proximity effect i
SNSjunctions. Although this version is very convenient f
a nonperturbative analysis, it has the natural disadvantag
the supersymmetric approach: no interaction can be inclu
beyond the mean-field approximation. It means that the
perconducting order parameterD should be treated as
background field rather than a dynamical one. More spec
cally, D was taken into account10 just by the boundary con
ditions ~Andreev reflection! at the boundaries of a norma
metal, while having been considered as a given field in
superconducting region. This allows for changes in char
teristics of the normal metal in the proximity of the supe
conductor, but not for the possibility of changes in the s
perconducting order parameter in the proximity of t
normal metal.

The action in the normal region~N! has the standard
form5,19 while in the superconductor~S! we have the NLsM
of the form~13!. The continuity of the Green function acros
the N/S boundary requires

QNuN/S5VD
† QSVDuN/S . ~29!

The N region by itself would favorQN5L. The proximity
leads to a rotation of the matrixQN in the N region in order
to match the structure imposed by the boundary condit
~29!:

QN→VN
† QNVN , ~30!

with the rotation matrixVN of the same structure asVD in the
S region so that at the boundary they match each other. P
ceeding in the same manner as above we keep only thv
50 component of the pairing field and neglect the disor
induced fluctuations, i.e., we putQN5QS5L. Then for the
N region we have
2-5
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Q→VN
† L VN5cosue1sinued̂,

d̂e,e852de,2e8~cosxet̂2
tr1sinxet̂1

tr! ^ is2 , ~31!

whereue and xe are now independent variables. In a bu
superconductor, all these parameters were explicit funct
of D and e, Eq. ~17!. There is no such a constraint in th
normal region. The (e,2e) sectors in the normal region ar
still coupled due to the proximity effect but they may all b
different.

In this approximation the action corresponding to theN
region decouples into the sum of uncorrelated contributio

SN52pn(
e
E dr Le ,

Le5
D

4 F ~¹ue!
21sin2ueS ¹xe2

2e

c
AD 2G2e cosue .

~32!

Now we find the supercurrentj s by varying the action~32!
with respect to the vector potentialA:

j s52epnD T(
e

K sin2ueS ¹xe2 i
2e

c
AD L

N

, ~33!

where^•••&N stands for functional averaging with the actio
~32!, the functional integration being performed over fun
tions obeying the boundary conditions

xeuN5xuS , cosueuN5
e

Ae21uDu2
. ~34!

Here uDu and x are the modulus and phase of the ord
parameter at theN/S interface.

The classical trajectory corresponding to the action~32! is
nothing but the Usadel equation20

2
D

2
Du1

D

4
sin2uS ¹x2

2e

c
AD 2

1e cosu50,

¹Fsin2uS ¹x2
2e

c
AD G50. ~35!

For quasi-one-dimensional~quasi-1D! geometry in the ab-
sence of a magnetic field, the Usadel equation~35! can be
written as the equation foru,

2
d2u

dx2
1ae

2 cosu

sin3u
1Le

22 sinu50, ~36!

with the self-consistency condition onae ~see Fig. 1!:

xN5aeE d x

sin2ue

. ~37!

HerexN[x12x2 is the phase difference between two s
perconducting banks andLe5AD/2e is the coherence lengt
for two particles with the energy differencee propagating in
06452
ns

s:

-

r

-

the normal metal. For a long normal bridge between the t
superconducting banks,L@LT[AD/2pT, one may consider
separately three regions: those close to theN/S boundaries
~with the width of orderLT) and the bulk. Matching the
solutions for all the regions, we find the following expressi
which well approximates the solution for the entire norm
region:

u~x!58 tan~u0/4!e2L/2LeAcos2
xN

2
1sinh2

x

Le
,

ae532 tan2~u0/4!sinxNLe
21 exp@2L/Le#, ~38!

where u0[ueuN/S . In calculating the supercurrent throug
the normal bridge, one reduces the expression within
angular brackets in Eq.~33! to ae sinxN . Then it is enough
to keep only the leading term withe05pT because the con
tributions from all other frequencies are exponentially su
pressed asLe,LT . Then we obtain the following expressio
typical for Josephson junctionsj s5 j c sinxN , wherej c is the
critical current:

j c5e27pnD T tan2~uT/4!LT
21 exp@2L/LT#, ~39!

with uT[ue0
.

The supercurrent in the superconducting banks is fo
by varying the action~19! valid in theS region with respect
to the vector potentialA:

j s5epnDuDutanh
uDu
2T

xS

LS
, ~40!

where LS is the length of the superconductor andxS the
phase difference between its edges.

It should be stressed that we have varied the action for
entireSNSstructure, rather than only for the normal regio
subject to the boundary conditions at the superconduc
banks as in the supersymmetric variant of the NLsM for
dirty superconductors.10 This means that the phase differen
across the normal region is not fixed but should be fou
self-consistently by finding the optimal configuration for th
action for the entireSNSstructure subject by the matchin
the fields at theN/S boundaries. This defines the actu
phase differencexN , Eq. ~37!, across the normal bridge. Nu
merically, a similar procedure has been employed in Ref.
It is easy to show that the matching condition can be
pressed as the continuity of the supercurrents~as varying
with respect to the phase difference is equivalent to vary

FIG. 1. A spatial dependence of the phasex« across theSNS
contact for quasi-1D geometry.
2-6
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with respect to the vector potential!. Thus supercurrent con
servation defines the phase difference on the normal bri

uDu
64T

tanh
uDu
2T

xS5
LS

LT
e2L/LT sinxN tan2

uT

4
, ~41!

so that if the width of superconductor banksLs is sufficiently
large, the overall phase drop mainly happens across
banks.

Finally, let us reiterate that the main result of the pape
an alternative variant of the NLsM given by Eqs.~13!–~15!.
Here we have applied this formalism to a few relative
simple problems mainly to show that it works and has cert
advantages over alternative variants of the NLsM. This
model has also been applied to a microscopic considerati22

of the quantum phase slip problem in quasi-1
superconductors23,24 and to a microscopic derivation of leve
statistics in nonstandard symmetry classes introduced in
25. Let us also stress that the method employed in the d
vation of Eqs.~13!–~15! can be straightforwardly genera
ized both to including different types of interactions and
considering the unconventional pairing in dirty superco
ductors.
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APPENDIX

To perform the functional averaging in Eq.~22!, one
should employ some parametrization of the fieldQ in terms
of unconstrained matrices, for example,11,19

Q5~12W/2!L~11W/2!21,

whereW52W† andWL1LW50. TheQ integration then
reduces to the Gaussian one with weighte2S0 with S0 ob-
tained from Eq.~21! by expandingQ to second order inW.
The GaussianW integration is carried out with the help o
the following contraction rules:
06452
e,

he

s

n

ef.
ri-

-

er

^Tr MW~r !PW~r 8!&

52
2

pn (
ee8,0

a,b

@~p̂t1!ee8
ab tr M ee8

ab P̄e8e
ba

1p̂ee8
ab tr M ee

aa tr Pe8e8
bb

#, ~A1!

^Tr MW~r !Tr PW~r 8!&

52
2

pn (
ee8,0

a,b

p̂ee8
ab tr~M2M̄ !ee8

ab
~P2 P̄!e8e

ba ,

~A2!

where the upper indicesa,b refer to the time-reversal secto
and tr refers only to the matrix indices which are not ind
cated explicitly. The matrixp̂ in Eqs.~A1! and~A2! has the
following structure in the time-reversal sector:

p̂ee8~r ,r 8!5S P ue2e8u
d

~r ,r 8! P ue2e8u
c

~r ,r 8!

P ue2e8u
c

~r 8,r ! P ue2e8u
d

~r ,r 8!
D , ~A3!

where the propagators are solutions to the standard Coop
and diffuson equations:

@2D¹ r
21v#Pv

d ~r ,r 8!5d~r2r 8!,

F2DS ¹ r2 i
2e

c
A~r ! D 2

1vGPv
c ~r ,r 8!5d~r2r 8!.

~A4!

Note that in the absence of a magnetic field these contrac
rules go over to those previously derived for orthogon
symmetry.26

Next, one expandsQ in Eq. ~22! up to the fourth power in
W and uses the above contraction rules to obtain

^Tr~l2e!Q&Q5Tr~l2e!L, ~A5!

^Tr@AD ,Q#2&Q5Tr@AD ,L#21
8

pn (
e(v2e),0

P u2e2vu
d ~0!

~2e2v!2

3US ¹2
2e

c
ADDvU2

. ~A6!

Taking into account that the second term in the brackets
Eq. ~22! contributes to the higher-order correction only w
arrive at the Ginzburg-Landau functional described in
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