94 research outputs found

    Resuspension by fish facilitates the transport and redistribution of coastal sediments

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 945-958, doi:10.4319/lo.2012.57.4.0945.Oxygen availability restricts groundfish to the oxygenated, shallow margins of Saanich Inlet, an intermittently anoxic fjord in British Columbia, Canada. New and previously reported 210Pb measurements in sediment cores compared with flux data from sediment traps indicate major focusing of sediments from the oxygenated margins to the anoxic basin seafloor. We present environmental and experimental evidence that groundfish activity in the margins is the major contributor to this focusing. Fine particles resuspended by groundfish are advected offshore by weak bottom currents, eventually settling in the anoxic basin. Transmittance and sediment trap data from the water column show that this transport process maintains an intermediate nepheloid layer (INL) in the center of the Inlet. This INL is located above the redox interface and is unrelated to water density shifts in the water column. We propose that this INL is shaped by the distribution of groundfish (as resuspension sources) along the slope and hence by oxygen availability to these fish. We support this conclusion with a conceptual model of the resuspension and offshore transport of sediment. This fish-induced transport mechanism for sediments is likely to enhance organic matter decomposition in oxygenated sediments and its sequestration in anoxic seafloors.The VENUS Project and University of Victoria supported the ship and submersible time for field experiments, and the U.S. Geological Survey and Coastal and Marine Geological Program generously supported J.C. The project was supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada to V.T. and P.S. and a Yohay Ben-Nun fellowship and Moshe Shilo Center for Marine Biogeochemistry Fund award to T.K

    Observation of the screening signature in the lateral photovoltage of electrons in the Quantum Hall regime

    Get PDF
    The lateral photovoltage generated in the plane of a two-dimensional electron system (2DES) by a focused light spot, exhibits a fine-structure in the quantum oscillations in a magnetic field near the Quantum Hall conductivity minima. A double peak structure occurs near the minima of the longitudinal conductivity oscillations. This is the characteristic signature of the interplay between screening and Landau quantization.Comment: 4 pages, 4 figures, to be published in Phys. Rev.

    Self-consistent local-equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields

    Full text link
    Recent spatially resolved measurements of the electrostatic-potential variation across a Hall bar in strong magnetic fields, which revealed a clear correlation between current-carrying strips and incompressible strips expected near the edges of the Hall bar, cannot be understood on the basis of existing equilibrium theories. To explain these experiments, we generalize the Thomas-Fermi--Poisson approach for the self-consistent calculation of electrostatic potential and electron density in {\em total} thermal equilibrium to a {\em local equilibrium} theory that allows to treat finite gradients of the electrochemical potential as driving forces of currents in the presence of dissipation. A conventional conductivity model with small values of the longitudinal conductivity for integer values of the (local) Landau-level filling factor shows that, in apparent agreement with experiment, the current density is localized near incompressible strips, whose location and width in turn depend on the applied current.Comment: 9 pages, 7 figure

    Quantization of the Hall conductivity well beyond the adiabatic limit in pulsed magnetic fields

    Full text link
    We measure the Hall conductivity, σxy\sigma_{xy}, on a Corbino geometry sample of a high-mobility AlGaAs/GaAs heterostructure in a pulsed magnetic field. At a bath temperature about 80 mK, we observe well expressed plateaux in σxy\sigma_{xy} at integer filling factors. In the pulsed magnetic field, the Laughlin condition of the phase coherence of the electron wave functions is strongly violated and, hence, is not crucial for σxy\sigma_{xy} quantization.Comment: 4 pages, 4 figures, submitted to PR

    Electrostatics of Inhomogeneous Quantum Hall Liquid

    Full text link
    The distribution of electron density in the quantum Hall liquid is considered in the presence of macroscopic density gradient caused by side electrodes or inhomogeneous doping. In this case different Landau levels are occupied in different regions of a sample. These regions are separated by incompressible liquid. It is shown that the applicability of the approach by Chklovskii et al. is substantially restricted if the density gradient is not very large and disorder is important. Due to the fluctuations of the remote donor's density the liquid in the transition region can not be considered as completely incompressible. In the typical situation, when the gap between Landau levels is not much larger than the energy of disorder, the transition region is a wide band where electron density, averaged over the fluctuations, is independent of magnetic field. The band is a random mixture of regions occupied by electrons of upper level, by holes of lower level and by incompressible liquid. The width of this band is calculated and an analytical expression for the fraction of incompressible liquid in different parts of this band is given.Comment: 12 pages, RevTe

    Scanned Potential Microscopy of Edge and Bulk Currents in the Quantum Hall Regime

    Full text link
    Using an atomic force microscope as a local voltmeter, we measure the Hall voltage profile in a 2D electron gas in the quantum Hall (QH) regime. We observe a linear profile in the bulk of the sample in the transition regions between QH plateaus and a distinctly nonlinear profile on the plateaus. In addition, localized voltage drops are observed at the sample edges in the transition regions. We interpret these results in terms of theories of edge and bulk currents in the QH regime.Comment: 4 pages, 5 figure

    A model for cyclotron resonance scattering features

    Full text link
    (abbreviated version of the abstract) We study the physics of cyclotron line formation in the high-energy spectra of accreting X-ray pulsars using Monte Carlo methods, assuming that the line-forming region is a low-density electron plasma in a sub-critical magnetic field. We investigate the dependence of the shape of the fundamental line on angle, geometry, optical depth and temperature. We also discuss variations of the line ratios for non-uniform magnetic fields. These numerical predictions for the line profiles are linked to results from observational data analysis using an XSPEC model based on the Monte Carlo simulations. We apply this model to observational data from RXTE and INTEGRAL. The predicted strong emission wings of the fundamental cyclotron feature are not found in observational data, hinting at a bottom illuminated slab geometry for line formation.Comment: 16 pages, 15 figures, Astron. Astrophys. (in press

    Estimates of Particulate Organic Carbon Flowing from the Pelagic Environment to the Benthos through Sponge Assemblages

    Get PDF
    Despite the importance of trophic interactions between organisms, and the relationship between primary production and benthic diversity, there have been few studies that have quantified the carbon flow from pelagic to benthic environments as a result of the assemblage level activity of suspension-feeding organisms. In this study, we examine the feeding activity of seven common sponge species from the Taputeranga marine reserve on the south coast of Wellington in New Zealand. We analysed the diet composition, feeding efficiency, pumping rates, and the number of food particles (specifically picoplanktonic prokaryotic cells) retained by sponges. We used this information, combined with abundance estimates of the sponges and estimations of the total amount of food available to sponges in a known volume of water (89,821 m3), to estimate: (1) particulate organic carbon (POC) fluxes through sponges as a result of their suspension-feeding activities on picoplankton; and (2) the proportion of the available POC from picoplankton that sponges consume. The most POC acquired by the sponges was from non-photosynthetic bacterial cells (ranging from 0.09 to 4.69 g C d−1 with varying sponge percentage cover from 0.5 to 5%), followed by Prochlorococcus (0.07 to 3.47 g C d−1) and then Synechococcus (0.05 to 2.34 g C d−1) cells. Depending on sponge abundance, the amount of POC that sponges consumed as a proportion of the total POC available was 0.2–12.1% for Bac, 0.4–21.3% for Prochlo, and 0.3–15.8% for Synecho. The flux of POC for the whole sponge assemblage, based on the consumption of prokaryotic picoplankton, ranged from 0.07–3.50 g C m2 d−1. This study is the first to estimate the contribution of a sponge assemblage (rather than focusing on individual sponge species) to POC flow from three groups of picoplankton in a temperate rocky reef through the feeding activity of sponges and demonstrates the importance of sponges to energy flow in rocky reef environments

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added
    • …
    corecore