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The diagonal and off-diagonal AC conductivity of two-dimensional electron
gases with contactless Corbino geometry in the quantum Hall regime
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Ole Per Hansen
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We have investigated the AC conductivity elements in the quantum Hall regime of two-dimensional
electron gases coupled capacitively to electrodes with Corbino geometry. The samples are GaAlAs/
GaAs single heterostructures, and the measurements are made at low frequencies, up to 20 kHz. The
diagonal conductivity is derived from magnetocapacitance measurements. It increases with
increasing frequency according to a power law at integer filling factors. The exponent of the power
law depends on both temperature and filling factor. Ratios between Hall conductivities at different
filling factors are obtained by inductive measurements of the circulating current. They are found to
agree with quantization in multipla ofe2/h at the integer filling factors. ©1996 American Institute
of Physics.@S0021-8979~96!06320-7#

I. INTRODUCTION

In this article we use a contactless method to investigate
the quantum Hall effect of a two-dimensional electron gas
~2DEG!. Such contactless techniques have recently been ap-
plied elsewhere, using the torque magnetometer method1 and
the inductive coil method.2

It is well known that the source-drain current of a
Corbino sample with a fixed magnetic field perpendicular to
the 2DEG plane depends only on the diagonal part of the
conductivity tensor. This symmetry effect has long been used
to detect the diagonal conductivitysxx directly.

The low frequency diagonal AC conductivity can be ob-
tained by examining the magnetocapacitance of Corbino
samples with high-impedance~capacitive! contacts. The con-
version from capacitance to conductivity was previously ac-
complished with either a discrete3,4 or a distributed5,6 imped-
ance model. The distributed model as elaborated by Stern7 is
one-dimensional, but was used for the Corbino geometry
without analysis of the justification.5,6

A two-dimensional distributed model for capacitive cou-
pling to electrodes with Corbino geometry has been used for
many years to analyze nondegenerate 2DEGs on cryogenic
surfaces.8,9 In the present work we shall adopt this so-called
Sommer–Tanner model,10 which, to our knowledge, has not
previously been applied to degenerate semiconductor
2DEGs. There is a significant difference between the con-
ductivity results obtained with the Stern and Sommer-Tanner
models for certain sample geometries.

It is harder to obtain the Hall conductivitysxy directly.
Usual Hall voltage measurements on Hall bars are not suited
since they give the Hall resistivity, and the usual Corbino
measurements only give the diagonal conductivity.

Howeversxy can be made to appear by modifying the
standard transport measurements. For example, the source-
drain current of a Corbino sample will contain a contribution

proportional to the Hall conductivity if the magnetic field
changes with time~since¹3E52]B/]t). At integer filling
factors wheresxx.0 this is the only contribution, and thus
sxy can be obtained by measuring the transfer of charge
between the electrodes.11 This charge transfer effect relies on
very strong quantization in order to avoid backflow of charge
between the electrodes. Another approach is to short the
probes on a Hall bar and measure the Hall current instead of
the Hall voltage.12

We have detected the circulating current in our Corbino
samples with an inductive coupling. This current is basically
a product ofsxy and the potential difference across the
2DEG. The potential difference depends on the voltage divi-
sion between the impedances of the capacitive coupling and
of the 2DEG, which in turn is determined by the diagonal
conductivitysxx . In the quantum Hall regime the variations
in sxx are much larger than insxy and therefore the circu-
lating current will reflect the diagonal conductivity the stron-
gest. As we shall demonstrate, it is, however, still possible to
derive the Hall conductivity at integer filling factors from the
current.

II. EXPERIMENTAL SETUP

Our samples were square (7.537.5 mm2) pieces of
GaAlAs/GaAs heterostructures glued on top of a set of
Corbino electrodes with a low-temperature glue~General
Electric No. 7031!. This sample preparation technique was
developed by Templeton.4 The sample holder with electrodes
is shown in Fig. 1~a!. The radius of the disk electrode is 2.1
mm; the inner and outer radii of the ring electrode are 3.1
and 3.75 mm, respectively. We have used two heterostruc-
tures with different characteristics: sample 1 with density of
6.131015 m22 and mobility of 11.2 T21 at 1.5 K, and
sample 2 with density of 1.431015 m22 and mobility of
30 T21 at 1.5 K.

The magnetocapacitance of the Corbino samples was
measured with a Thompson bridge13,14as shown in Fig. 1~b!,a!Electronic mail: clp@mic.dtu.dk
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while for the circulating current we have used two counter-
wound coils placed around the sample, the Corbino being
located in the center of one coil. This is illustrated in Fig.
1~c!. The major contribution to the voltage across the coils
comes from the inductive coupling to the circulating current,
and the voltage is simply proportional to the current~apart
from a 90° phase shift!.

The measurements were performed by a two-phase
lock-in detector with frequencies in the range of 2.5–20.0
kHz at liquid He temperatures~1.5 and 4.2 K! and magnetic
field strengths up to 7.5 T. The phase setting of the lock-in
detector was zero at all frequencies, and the voltage over the
1:1 transformer was 4.0 V root-mean-square.

III. DETECTOR VOLTAGES

Typical outputs from the circuits in Figs. 1~b! and
1~c! are shown in Fig. 2. The peaks in the voltages appear
at integer filling factors, i.e. at plateaus in the Hall conduc-
tivity. The voltage from the capacitance bridge Fig. 2~a!
resembles the data from previous magnetocapacitance
measurements.4–6 No influence from]B/]t was observed.

Only one Shubnikov-de Haas period is observed in Fig.
2~a!, and it coincides with previous DC Hall-bar measure-
ments on the same heterostructure.14 This suggests that the
electron density is not significantly perturbed by the elec-
trodes. In Corbino samples with evaporated contacts, the
stronger coupling could cause alternating depletion and en-
hancement of the density under the electrodes.3

From Fig. 2 it is clear that the behavior of the coil volt-
age is qualitatively identical with that of the bridge voltage
apart from the 90° phase change introduced by the inductive
coupling. This is due to the division of the Corbino electrode
voltage between the capacitive impedance of coupling to the

2DEG and the resistive impedance of the 2DEG. However,
as we shall demonstrate, a quantitative analysis allows the
extraction ofsxy from the coil voltage.

IV. MAGNETOCAPACITANCE

The magnetocapacitance can be extracted directly from
the bridge voltage, but in order to calculate the diagonal
conductivity from the capacitance some sort of model is nec-
essary. We have used the distributed impedance model of
Sommer and Tanner, which is based on the idea that the
2DEG above the measuring electrodes is capacitively
coupled to them with a capacitance per square,Ch . If an
electrode is kept at potentialVe and the potential in the
2DEG is denoted byV, this leads to the partial differential
equation

¹2V5
ivCh

sxx
~V2Ve!. ~1!

If we assume cylindrical symmetry,¹2V is given by

¹2V5
]2V~r !

]r 2
1
1

r

]V~r !

]r
, ~2!

and we arrive at a Bessel differential equation.~Here we may
note that the first order derivative in Eq.~2! makes the dif-
ference as compared to the one-dimensional model of Stern.!
In writing down the solutions corresponding to the three
Corbino areas, disk, gap and ring, we omit the second kind
Bessel term in the disk area, in order to ensure that the so-
lutions remain finite atr50. This then results in three equa-
tions with five integration constants. Continuity requirements
on V(r ) and its first derivative atr5r 1 and r5r 2 give four
equations for the determination of the constants. As a fifth
equation we use the requirement of charge conservation in
the flow of current between the disk and the ring.

FIG. 1. ~a! Corbino electrodes,~b! capacitance bridge, and~c! counter-
wound coils for inductive measurement of circulating current.

FIG. 2. Real and imaginary parts of detector voltages from~a! capacitance
bridge and~b! counterwound coils as functions of the magnetic field ob-
tained with sample 1 atT51.5 K, with a frequency of 10 kHz.
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From the potential distributionV(r ) the effective~mag-
neto!capacitance can be calculated using the relation:

Ceff5
I

ivV0
5
2pCh

V0
E
disk

~V~r !2Vdisk!rdr , ~3!

where I is the current through the Corbino,Vdisk is the po-
tential of the disk electrode, andV0 is the potential differ-
ence between the disk and ring electrodes.

We have investigated the influence of the square geom-
etry of the samples by additionally solving Eq.~1! numeri-
cally in rectangular coordinates. The resulting values of
Ceff coincide with those obtained analytically assuming cy-
lindrical symmetry.

Figure 3 shows a parametric plot of a typical magneto-
capacitance result along with a fit with Eq.~3!. As fitting
parameter we have used the radiusr 1 of the disk electrode.
The fitted value is 2.6 mm, to be compared with the geo-
metrical value of 2.1 mm. The fitted value does not have a
direct physical significance, since all three radii are fitting
parameters. We keep two of the effective radii fixed at the
geometrical values in order to simplify the fitting procedure.
The difference between the geometric and fitted radii is
likely caused by a slight misalignment of the sample with
respect to the electrodes, and by the fact that the dielectric
constant in the spacing between sample and electrodes is not
that of vacuum, as assumed in the model.

The peaks in the capacitance data are not revealed in
Fig. 3. This is so because the only changing parameter in the
capacitance is the diagonal conductivity, and therefore all
peaks lie on the same curve. Away from the integer filling
factors the diagonal conductivity is large, corresponding to
an almost pure capacitive signal~around 4.35 pF in this ex-
ample!. At the integer filling factors the diagonal conductiv-
ity becomes significantly smaller, and the capacitance starts
to move out along a curve which is determined by the geom-
etry of the sample.

Previously, magnetocapacitance measurements on de-
generate 2DEGs with Corbino geometry were analyzed5,6

with the one-dimensional Stern model, that was developed
for use on slim rectangular metal–oxide–semiconductor field
effect transistor~MOSFET! structures. The Stern model can
successfully be applied to thin ring electrodes with large ra-
dii. For an electrode with inner radiusr 1 and outer radius

r 2 the requirement, in order thatr
21]V/]r can be neglected

in Eq. ~2!, is r 2 /(r 22r 1)@1. If the Stern model is used to
derive the diagonal conductivity of a system with a cylindri-
cal electrode that does not fulfill this requirement, the result
becomes inaccurate. In particular for the ultimate limit
r 150 ~a point disk electrode! the error in the calculated con-
ductivity is around 300%. With the radii used by Goodall et
al,5 we find the error to be only a few percent.

V. DIAGONAL CONDUCTIVITY

The diagonal conductivity can easily be derived from
parametric plots like Fig. 3. This is so because the parameter
of the experimental data~Fig. 2! is the magnetic field,
whereas the Sommer–Tanner fit is parameterized by the di-
agonal conductivity. The procedure for obtaining the magne-
toconductivity is as follows. Choose a magnetic field value
B, and look at the corresponding experimental capacitance
data point on the parametric plot~Fig. 3!. Now determine the
closest model capacitance data point in the plot. This data
point corresponds to a value of the diagonal conductivity
sxx . Thus sxx(B) is obtained. Fig. 4 shows the result of
plotting the extracted values of the diagonal conductivity at
integer filling factors as a function of frequency. It is seen
how the conductivity increases with increasing frequency ac-
cording to a power law. This has been observed
previously.3,6 The exponents of the power laws are found to
increase as temperature falls, and are largest for the lowest
filling factors. Thus, the stronger the quantization, the stron-
ger frequency dependence observed. There seems to be a
small departure from the power law dependence at the 20
kHz data points. However, it is not obvious whether this is a
true effect or an instrument artifact. Further measurements at
higher frequencies are needed to clarify this.

A possible objection to the present~and previous! results
for sxx(v) in the quantum Hall regime is that the measure-

FIG. 3. Parametric plot showing the measured magnetocapacitance~solid
line! and a fit with the Sommer–Tanner model~dashed line! obtained using
sample 1 atT51.5 K, with a frequency of 10 kHz.

FIG. 4. The frequency dependence of the diagonal conductivity at integer
filling factors. The data were obtained using sample 1.

4481J. Appl. Phys., Vol. 80, No. 8, 15 October 1996 C. L. Petersen and O. P. Hansen

Downloaded¬05¬Aug¬2009¬to¬192.38.67.112.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jap.aip.org/jap/copyright.jsp



ments were all performed on electrons embedded in semi-
conducting material. At strong quantizations the conductivity
of the 2DEGs is so small that currents in the semiconductor
might influence the signal from the samples. Such a contri-
bution would have a frequency dependence similar to the one
observed. Therefore, part of the frequency dependence could
originate from the semiconductor surroundings.

Theoretical work on the frequency dependence has used
the concepts of percolation15 and localization.16,17However,
a comparison with the experiments is not straightforward.

VI. CIRCULATING CURRENT

The circulating current in the Corbino samples was de-
tected by means of the counterwound coils. The voltage from
the coils should be simply proportional to the current, apart
from a phase turn of 90°. In reality there is an extra constant
contribution to the signal that comes from wires in the vicin-
ity of the coils. After having corrected for this contribution,
and rotated the data to compensate for the inductive phase
turn, the result is as shown in Fig. 5. This graph is directly
proportional to the circulating current. The constant of pro-
portionality depends on the strength of the inductive cou-
pling.

The extra information present in the voltage from the
coils as compared with the voltage from the capacitance
bridge becomes apparent by comparing Fig. 3 to Fig. 5. All
the peaks in the data depicted in the parametric plot of Fig. 3
lie on a single curve. In Fig. 5 on the other hand, each peak
has an individual curvature. This is direct evidence of an-
other changing parameter besidessxx . This extra parameter
is the Hall conductivity. It can also be seen that, for a given
peak in the coil voltage, the curvature remains approximately
the same for the entire extent of the peak, i.e. a given peak
moves back and forth along one single curve. This implies

thatsxy is constant over the extent of the peak, and thus the
plateau formation is also directly observable in the paramet-
ric plot of Fig. 5. It is possible to obtain quantitative results
for the Hall conductivity at the smallest integer filling factors
by using the Sommer–Tanner model.

VII. OFF-DIAGONAL CONDUCTIVITY

The Sommer–Tanner model can be used to analyze the
circulating current in the Corbino samples.18 Generally it can
be written

I u5E
0

r3
Ju~r !dr5sxy@V~0!2V~r 3!#, ~4!

where Ju is the circulating current density. ThusI u is the
product of the Hall conductivity and the potential difference
in the 2DEG between the center of the Corbino sample and
the outer edge of the ring electrode. This potential difference
depends only on the diagonal conductivity.

The circulating current corresponding to filling factor
one (sxy5e2/h) can be calculated with the Sommer–Tanner
model using the parameters obtained from the fits to the
capacitance data. This current can then be scaled to fit each
of the observed peaks in the coil signal. The scaling factor
will be different for each of the peaks, and since the current
was calculated for filling factor one, the scaling factor should
be given by

k5nx, ~5!

wheren is the filling factor andx the inductive coupling. In
order to get the absolute values ofn ~i.e.sxy), it is necessary
to know the coupling constantx. Unfortunately,x is not
known with sufficient accuracy in the present experiment. It
is however possible to determine ratios between Hall con-
ductivities at different integer filling factors without knowing
x. This is done simply by taking the ratios of the scaling

FIG. 6. Ratios between scaling factors at various integer filling factors. The
temperature is 1.5 K.

FIG. 5. Parametric plot showing the inductive coil voltage~solid line! and
fits with the Sommer–Tanner model~dashed lines! from sample 1 at
T51.5 K, with a frequency of 7.9 kHz.
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factors. These ratios turn out to agree well with the expected
filling factor fractions. This is shown in Fig. 6. The results
are within610% of that expected. It is not possible on the
basis of the present experiment to observe any frequency
dependence ofsxy .

The circulating current becomes very large at the lowest
integer filling factors, typically around 0.5 mA. Assuming a
uniform radial distribution, this corresponds to a current den-
sity of Ju.0.15 A/m. The actual current density will be
larger than this value, since the distribution is not uniform.
For the particular Corbino geometry considered here, the
current density is expected to have a maximum value of ap-
proximately 0.6 A/m at the rim of the inner electrode.18 The
breakdown of the quantum Hall effect in a GaAlAs/GaAs
Corbino sample with ohmic contacts has been reported to
occur at a circulating current density ofJu,c51.16 A/m.19

VIII. CONCLUSION

We have used a two-dimensional distributed impedance
model to analyze the capacitive coupling between a 2DEG
and a pair of electrodes with Corbino geometry. From ca-
pacitance measurements we have determined the frequency
dependence of the diagonal AC conductivitysxx at integer
filling factors.

We have demonstrated that the circulating current in a
Corbino sample can be detected by inductive coupling to a
set of counterwound coils. Using the results forsxx it has
been possible to observe the quantization ofsxy , and espe-
cially the ratios ofsxy’s at different Hall plateaus.

The method presented for the detection of the circulating
current might also be used for purposes other than extracting
sxy . One particular object of further investigation would be
the influence of the magnitude of the circulating current at
integer filling factors.
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