1,344 research outputs found

    The Artist\u27s Dilemma; A Philosophical Analysis of “Selling Out” and Its Impacts on Well-Being In the Music Industry

    Get PDF
    Beginning with a discussion of a concept referred to as “The Artist’s Dilemma,” my thesis discusses the common criticism of artists in the music industry that they can “sell out” by changing their sound, appearance, and jeopardizing their artistic integrity in exchange for financial or celebrity gain. Furthermore, it attempts to search for a universal guide by which artists in the music industry could circumnavigate this “artist’s dilemma” in order to ensure a meaningful career without over-playing their role as a celebrity, nor under-playing their role as a musician. In order to evaluate this topic, I consider multiple “real world” examples of both artists who have been traditionally labeled as “sellouts,” and those that have managed to maintain artistic integrity throughout their career. Next I move to acknowledging philosophical perspectives on the topic of well-being (e.g. Hedonistic, Desire-Satisfaction, and Objective List theories) in attempts to gain outside perspectives on what constitutes a meaningful life for an individual, and how it can be achieved. Then I attempt to evaluate the “artist’s dilemma” through the lens of each previously mentioned philosophical perspective on well-being. My thesis concludes that, more often than not, “selling out” in the music industry will not result in an increase to overall well-being across the course of a career or lifetime. However, this conclusion is provided under the stipulation that determinations on this matter are ultimately subject to preferences and desires of the individual artist, and by which of the three philosophical perspectives of well-being they find themselves most compelled

    The use of neighbourhood intensity comparisons, morphological gradients and Fourier analysis for automated precipitate counting & Pendell¨osung fringe analysis in X-ray topography

    Get PDF
    Crystal distortions modify the propagation of X-rays in single crystal materials, and X-ray topography can be used to record these modifications on a film thus providing images of the distributions and nature of defects, dislocations, strains, precipitates, etc. in semiconductors. Small variations of contrast, which often need to be analysed can be rendered invisible. Furthermore, artefacts in the films must be removed. This study examines the use of advanced image analysis techniques applied to a selection of X-ray topographs in section transmission mode: (i) the automated counting of oxygen-related precipitates and (ii) the enhancement of Pendell¨osung fringes. The technique also succeeds in removing unwanted features in the original x-ray topographs such as vertical streaking due to collimating slit phase contrast and strain features near the surface due to the presence of integrated circuit process strains

    Detection of the nearest Jupiter analog in radial velocity and astrometry data

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.The presence of Jupiter is crucial to the architecture of the Solar System and models underline this to be a generic feature of planetary systems. We find the detection of the difference between the position and motion recorded by the contemporary astrometric satellite Gaia and its precursor Hipparcos can be used to discover Jupiter-like planets. We illustrate how observations of the nearby star ε\varepsilon Indi A giving astrometric and radial velocity data can be used to independently find the orbit of its suspected companion. The radial velocity and astrometric data provide complementary detections which allow for a much stronger solution than either technique would provide individually. We quantify ε\varepsilon Indi A b as the closest Jupiter-like exoplanet with a mass of 3 MJupM_{Jup} on a slightly eccentric orbit with an orbital period of 45 yr. While other long-period exoplanets have been discovered, ε\varepsilon Indi A b provides a well constrained mass and along with the well-studied brown dwarf binary in orbit around ε\varepsilon Indi A means that the system provides a benchmark case for our understanding of the formation of gas giant planets and brown dwarfs.Peer reviewe

    Color Difference Makes a Difference: Four Planet Candidates around τ Ceti

    Get PDF
    The removal of noise typically correlated in time and wavelength is one of the main challenges for using the radial-velocity (RV) method to detect Earth analogues. We analyze τ Ceti RV data and find robust evidence for wavelength-dependent noise. We find that this noise can be modeled by a combination of moving average models and the so-called "differential radial velocities." We apply this noise model to various RV data sets for τ Ceti, and find four periodic signals at 20.0, 49.3, 160, and 642 days, which we interpret as planets. We identify two new signals with orbital periods of 20.0 and 49.3 days while the other two previously suspected signals around 160 and 600 days are quantified to a higher precision. The 20.0 days candidate is independently detected in Keck data. All planets detected in this work have minimum masses less than 4M⊕ with the two long-period ones located around the inner and outer edges of the habitable zone, respectively. We find that the instrumental noise gives rise to a precision limit of the High Accuracy Radial Velocity Planet Searcher (HARPS) around 0.2 m s−1. We also find correlation between the HARPS data and the central moments of the spectral line profile at around 0.5 m s−1 level, although these central moments may contain both noise and signals. The signals detected in this work have semi-amplitudes as low as 0.3 m s−1, demonstrating the ability of the RV technique to detect relatively weak signals

    Evidence for at least three planet candidates orbiting HD20794

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2017 ESO. Published by EDP Sciences.We explore the feasibility of detecting Earth analogs around Sun-like stars using the radial velocity method by investigating one of the largest radial velocities datasets for the one of the most stable radial-velocity stars HD20794. We proceed by disentangling the Keplerian signals from correlated noise and activity-induced variability. We diagnose the noise using the differences between radial velocities measured at different wavelength ranges, so-called "differential radial velocities", as well as the combination of radial velocities measured for other stars to account for instrumental effects. We apply this method to the radial velocities measured by HARPS, and identify four signals at 18, 89, 147 and 330 d. The two signals at periods of 18 and 89 d are previously reported and are better quantified in this work. The signal at a period of about 147 d is reported for the first time, and corresponds to a super-Earth with a minimum mass of 4.59 Earth mass located 0.51 AU from HD20794. We also find a significant signal at a period of about 330 d corresponding to a super-Earth or Neptune in the habitable zone. Since this signal is close to the annual sampling period and significant periodogram power in some noise proxies are found close to this signal, further observations and analyses are required to confirm it. The analyses of the eccentricity and consistency of signals provide weak evidence for the existence of the previously reported 43 d signal and a new signal at a period of about 11.9 d with a semi amplitude of 0.4 m/s. We find that the detection of a number of signals with radial velocity variations around 0.5\,m/s likely caused by low mass planet candidates demonstrates the important role of noise modeling in searching for Earth analogs.Peer reviewe

    Bayesian search for low-mass planets around nearby M dwarfs. Estimates for occurrence rate based on global detectability statistics

    Get PDF
    Mikko Tuomi, 'Bayesian search for low-mass planets around nearby M dwarfs - estimates for occurrence rate based on global detectability statistics', Monthly Notices of the Royal Astronomical Society, Vol. 441 (2): 1545-1569, first published online 8 May 2014. The version of record is available online at doi: 10.1093/mnras/stu358 © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Due to their higher planet-star mass ratios, M dwarfs are the easiest targets for detection of low-mass planets orbiting nearby stars using Doppler spectroscopy. Furthermore, because of their low masses and luminosities, Doppler measurements enable the detection of lowmass planets in their habitable zones that correspond to closer orbits than for solar-type stars. We re-analyse literature Ultraviolet and Visual Echelle Spectrograph (UVES) radial velocities of 41 nearby Mdwarfs in a combination with new velocities obtained from publicly available spectra from the HARPS-ESO spectrograph of these stars in an attempt to constrain any low-amplitude Keplerian signals. We apply Bayesian signal detection criteria, together with posterior sampling techniques, in combination with noise models that take into account correlations in the data and obtain estimates for the number of planet candidates in the sample. More generally, we use the estimated detection probability function to calculate the occurrence rate of low-mass planets around nearby M dwarfs. We report eight new planet candidates in the sample (orbiting GJ 27.1, GJ 160.2, GJ 180, GJ 229, GJ 422, and GJ 682), including two new multiplanet systems, and confirm two previously known candidates in the GJ 433 system based on detections of Keplerian signals in the combined UVES and High Accuracy Radial velocity Planet Searcher (HARPS) radial velocity data that cannot be explained by periodic and/or quasi-periodic phenomena related to stellar activities. Finally, we use the estimated detection probability function to calculate the occurrence rate of low-mass planets around nearby M dwarfs. According to our results, M dwarfs are hosts to an abundance of low-mass planets and the occurrence rate of planets less massive than 10M? is of the order of one planet per star, possibly even greater. Our results also indicate that planets with masses between 3 and 10 M⊕ are common in the stellar habitable zones of M dwarfs with an estimated occurrence rate of 0.21+0.03 -0.05 planets per star.Peer reviewe
    corecore