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Abstract

The removal of noise typically correlated in time and wavelength is one of the main challenges for using the radial-
velocity (RV) method to detect Earth analogues. We analyze τ Ceti RV data and find robust evidence for
wavelength-dependent noise. We find that this noise can be modeled by a combination of moving average models
and the so-called “differential radial velocities.” We apply this noise model to various RV data sets for τ Ceti, and
find four periodic signals at 20.0, 49.3, 160, and 642 days, which we interpret as planets. We identify two new
signals with orbital periods of 20.0 and 49.3 days while the other two previously suspected signals around 160 and
600 days are quantified to a higher precision. The 20.0 days candidate is independently detected in Keck data. All
planets detected in this work have minimum masses less than M4 Å with the two long-period ones located around
the inner and outer edges of the habitable zone, respectively. We find that the instrumental noise gives rise to a
precision limit of the High Accuracy Radial Velocity Planet Searcher (HARPS) around 0.2 m s−1. We also find
correlation between the HARPS data and the central moments of the spectral line profile at around 0.5 m s−1 level,
although these central moments may contain both noise and signals. The signals detected in this work have semi-
amplitudes as low as 0.3 m s−1, demonstrating the ability of the RV technique to detect relatively weak signals.

Key words: methods: numerical – methods: statistical – stars: individual (HD 10700) – techniques: radial velocities

1. Introduction

The radial-velocity (RV) technique is one of the most
successful methods used to detect exoplanets. The extreme
precision spectrographs developed in recent years have
improved the precision of Doppler measurements down to a
few meters per second. In particular, the High Accuracy Radial
Velocity Planet Searcher (HARPS) spectrometer has enabled
the discovery of Super-Earths due to its precision of measuring
down to 1 m s−1 RV (Pepe et al. 2002; Mayor et al. 2003).
However, this precision is still not high enough to detect Earth
analogues in the habitable zone of nearby stars, which requires
achieving 10 cm s−1 precision (Mayor et al. 2014). Moreover,
efficient statistical tools and noise models are required to
disentangle the signals from stellar and instrumental noise, as
summarized in the RV challenge results (Dumusque et al.
2017).

The Keplerian signals in RV measurements can be diluted
and distorted by stellar activity, rotation, and uneven sampling
of observation times. These sources of contamination can be
partly removed by various activity indicators such as the Ca II
HK emission (RHK), line bisector span (BIS), and the width of
the spectral lines (FWHM). However, the relation between the
indicators and their RV counterparts could be very complex
and is not necessarily deterministic, leading to controversial
results in the validation of planetary candidates (e.g., Robertson
et al. 2014; Anglada-Escudé & Tuomi 2015). This incomplete
modeling of RV noise and lack of consensus on the most

appropriate and efficient statistical methods are limiting the
abilities of RV analysis to detect Earth analogues (see Feng
et al. 2016 for details). Nevertheless, our noise modeling
approach is one of the best RV modeling strategies in the field
according to the analysis of the RV fitting challenge results
(Dumusque et al. 2017).
Another challenge is the dependence of RV noise on

wavelength or, in practice, on echelle order because RVs for
HARPS are determined on an order-by-order basis. Since the
jitter in RV variations depends on spectral orders (Anglada-
Escudé & Butler 2012), the RV averaged over all orders would
contain wavelength-dependent noise due to a lack of appro-
priate weighting and correcting. This motivates us to model the
color dependency of the RVs. We divide the 72 spectral orders
into groups, and average the RVs in each group to generate the
so-called “aperture data sets” and investigate the differences
between these aperture data sets—the so-called “differential
RVs” (Feng et al. 2017b).
In this work, we use a combination of moving average

models and the differential RVs to remove wavelength- and
time-dependent noise. We apply this model to the HARPS
measurements of τ Ceti, which may host a multi-planetary
system according to previous analyses (Tuomi et al. 2013;
hereafter MT13). τ Ceti is a Sun-like star but is not as active as
the Sun. There are currently more than 9000 HARPS
measurements of this star, potentially enabling us to find
signals with semi-amplitude as low as 0.2 m s−1 (MT13).
Although MT13 have removed part of the correlated noise
using moving average models, their noise modeling is probably
incomplete, since the wavelength-dependent noise was not
taken into account. With new data obtained by HARPS and the
use of differential RVs, we reanalyze the RV variations of τ
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Ceti to find Keplerian signals and to attempt to verify the
results of MT13.

This paper is structured as follows. First, we introduce the
HARPS and Keck measurements of τ Ceti, and define various
data sets in Section 2. In Section 3 we describe the Markov
Chain Monte Carlo (MCMC) method used to sample the
posterior distribution within the Bayesian framework. Then we
justify the use of differential RVs to remove wavelength-
dependent noise, and select the optimal noise model for each
data set in Section 4. We apply these models to find planetary
candidates, and compare them with previous results in
Section 5. We also investigate the cause of highly eccentric
signals. In Section 6, we report the parameters of planetary
candidates, and analyze the dynamical stability and habitability
of these planetary candidates. Finally, we discuss and conclude
in Section 7.

2. Radial-velocity Data of τ Ceti

In the European Southern Observatory archive, there are
more than 9000 publicly available RVs measured by HARPS
from 2003 June to 2013 September for HD 10700 as part of the
observing programs 60.A-9036, Mayor, Comm, 072.C-0488,
072.C-0513, 074.D-0380, 075.C-0234, 075.D-0760, 076.C-
0073, 077.C-0530, 078.C-0751, 078.C-0833, 079.C-0681, 081.
C-0034, 082.C-0315, 083.C-1001, 084.C-0229, 085.C-0318,
086.C-0230, 087.C-0990, 088.C-0011, 089.C-0050, 090.C-
0849, and 091.C-0936.

The main data we will use are the RVs measured by HARPS
(Mayor et al. 2003) and processed by the TERRA pipeline
(Anglada-Escudé & Butler 2012). The data are processed using
the astrocatalog mode of TERRA whereby all barycentric
corrections are recomputed using consistent ephemeris and
coordinates and proper motions based on van Leeuwen (2007).
This means that the calculation of barycentric earth RV does
not rely on telescope header information input by the different
HARPS programs from which we have used data. The TERRA
algorithm also produces 72 data sets, one for each HARPS
spectral order. Each of them is composed of RVs measured at a
certain wavelength range. The RVs are analyzed in combina-
tion with three activity indices, including the calcium activity
index (S-index or IS), the spectral line bisector (BIS or IB) and
FWHM (or IF) of the cross-correlation function (CCF). To
increase the signal-to-noise ratio in aperture data sets, we
evenly divide the 72 RV orders into groups, and average the
data sets by order in each group weighted by their measurement
uncertainties to form an averaged data set. For example, we
divide the 72 orders into n groups, and average the data sets in
each group to generate n aperture data sets, named nAPi, where
i=1,K, n. The average of all orders forms the 1AP1 data set.

To remove short-term noise in the RV data sets, we define
another type of RV by binning the RVs measured within one
hour. We start from the beginning of an RV data set and set the
beginning time as the reference time. Then we average the RVs
within one hour from the reference time weighted by their
uncertainties. We then define the first time point out of the one
hour window as the next reference time, and average the RVs
within the one hour window in the same way. Repeating this,
we generate the binned version of a given RV data set. The
binned version of the nAPi data set is dubbed “binnednAPi.”

The outliers beyond 5-σ of the RVs in 1AP1 are removed
from all aperture data sets. Considering that the noise caused by
stellar activity may not be properly estimated by measurement

errors (including photon poisson noise and a calibration error of
30 cm s−1), we also weight each data set by a constant based on
the sum of jitter and measurement uncertainty terms. We try
different jitter levels and do not find significant changes in
the periodograms of the aperture data sets. In other words, the
signals in the aperture data sets are not sensitive to the
weighting function used to average spectral orders. Thus
we still use the measurement errors to weight data sets in the
averaging process.
We define the RV differences between aperture data sets as

differential RVs. We denote them by “nAPx-x′,” where n is the
number of divisions, and x and x′ denote different data sets in
the n divisions of the 72 aperture data sets. For example, by
subtracting 3AP1 from 3AP2, we obtain the 3AP2-1 data set.
We will use differential RVs to remove the wavelength-
dependent noise in Section 4.
Apart from the TERRA-reduced HARPS measurements of τ

Ceti, we also use the HARPS data reduced by the CCF method
and the RVs measured by the HIRES spectrometer on the Keck
telescope (Butler et al. 2016). For HIRES we model the
dependence of RV variation on the photon count and
integration time. The 1AP1 and Keck data sets and their
normalized activity indices are shown in Figure 1. These data
together with the aperture data sets are published electronically.
Around JD 2453280, the FWHM scatters greatly and the RV
changes rapidly. From JD 2453280 to JD 2453285, τ Ceti was
observed for asteroseismology purposes. The star was observed
continuously for five days, with exposure times of 40 s
(Teixeira et al. 2009). For such short exposure time and
high-cadence measurements, the data is contaminated by
excess noise from a periodic guiding error (Teixeira et al.
2009). So we remove the 1597 data points before JD 2453500
to form a more conservative subset named “C1AP1.” The
whole process of data reduction and modeling is shown in
Figure 2.

3. Data Analysis Methods

We compare RV models in the Bayesian framework. We
start from the Bayes theorem, which is

P M
P M P M

P M
, 1i

i i

j
j




å
=( ∣ ) ( ∣ ) ( )

( ∣ )
( )

where Mi is a model, and  is the data, P Mi ( ∣ ) is the
posterior, and P Mi( ∣ ) and P Mi( ) are the evidence (or
marginalized likelihood) and the prior of model Mi, respec-
tively. The denominator of Equation (1) is a normalization
term. The posterior of a model is a measure of its plausibility. If
no model is preferred a priori, the posterior ratio is equal to the
evidence ratio, which is also called the “Bayes factor” (BF).
We claim that a model is favored over another if the BF is
larger than a certain value. According to the analyses of the
RVs for M dwarfs by Feng et al. (2016), the BF estimated by
the Bayesian information criterion (BIC), combined with a
threshold of 150, avoids false positives and negatives.6 This is
equivalent to the criterion, BIC 10D > , suggested by Kass &
Raftery (1995). Although they did not test this for RV data, we

6 Although the comparison of BF estimators performed by Feng et al. (2016)
is for M dwarfs, the BIC is found to be rather conservative, and thus is
appropriate for τ Ceti, which is a quiet star.
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have found it to work well. Thus we use the BIC to estimate the
BF, and select signals using the BF threshold of 150 in
this work.

For a given model M and data , we need to estimate its
parameters q by calculating their posterior densities according to

P M
P M P M

P M
,

,
, 2




q q q
=( ∣ ) ( ∣ ) ( ∣ )

( ∣ )
( )

where P M, q( ∣ ) and P Mq( ∣ ) are the likelihood and prior
distributions, respectively. The specific likelihood and prior
distributions for various models will be introduced in the next
section. Because the posterior distributions for RV models are
always multi-dimensional and multi-modal, the prior sampling
may not well resolve the narrow posterior maxima. Thus we
sample the posterior using the MCMC implemented by the
adaptive Metropolis–Hastings algorithm (Haario et al. 2001),
which was first applied to the analysis of RV data by Tuomi &
Jenkins (2012). We first launch tempered/hot chains to explore
the whole parameter space and to find local posterior maxima.
We then generate untempered/cold chains to explore these
maxima in order to quantify the signals and to estimate the

parameters “maximum a posteriori” (MAP). Our method is
similar to the parallel tempering MCMC algorithm introduced
by Gregory (2005).
To make the MCMC chains identify the most probable areas

of the posterior, we generate hot and cold chains in the following
way. First, we run cold chains to obtain the posterior density for
the null hypothesis that no signals exist in the data. Second, we
evenly divide the logarithm of the period range into 20 intervals,
and launch four hot chains to find the posterior maximum for
each. We call all of the maxima found by these chains primary
signals. Third, we choose the primary signal that gives the
highest likelihood, and start cold chains from the position of this
signal to generate a statistically representative posterior sample.
Fourth, we compare the one-planet model with the null
hypothesis using the BF threshold. If the one-planet model is
favored, we move on to add another primary signal into the
model, and run MCMC chains to calculate the BF for model
comparison. We run steps 3–4 repeatedly until an extra Keplerian
signal is not favored by the data. In addition to the BF threshold,
we follow Tuomi (2012) to confirm a signal if it is constrained
from above and below in the marginalized posterior distribution,
i.e., P P M,k ( ∣ ) converges to a stationary distribution.

Figure 1. RV data and activity indicators of 1AP1 or HARPS (left panels) and Keck (right panels). The red lines denote the zero RV, and the blue line shows the
epoch of JD 2453500, which is used to define the C1AP1 data set. The activity indices are normalized to the zero mean and unit standard deviation. The measurement
uncertainties of the RV data are shown with error bars. There are 8880 and 752 data points in the 1AP1 and Keck data sets, respectively.
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4. Differential Radial Velocities

4.1. Wavelength-dependent Noise Models

The jitter in RV variations is probably wavelength dependent
due to the wavelength-dependent modulation of stellar
radiation by stellar activity (Desort et al. 2007; Huélamo
et al. 2008). This dependence indicates that the RVs
determined through averaging RV orders are biased due to a
lack of proper weighting and correction. To avoid this bias and
model wavelength-dependent RVs, we introduce a new type of
noise proxy called “differential RVs,” defined by the RV
differences between aperture data sets. Since Keplerian signals
do not depend on wavelength, the differential RVs only contain
wavelength-dependent noise. Actually, they are approxima-
tions of the derivatives of RV noise with respect to wavelength.
They provide important information about stellar activity and
instrumental noise, and thus can be used to remove the
wavelength-dependent noise in Doppler measurements.

If we express the non-Keplerian part in an aperture data set
with wavelength range centered at λ as t, lY( ), the differential
RV is defined by the difference between two aperture data sets,

D t v t v t t t, , , , , ,

3
i j i j i j i j i j1 1l l l l lº - = Y - Y+ +( ) ( ) ( ) ( ) ( )

( )

where v t ,i jl( ) is the RV at time ti and wavelength jl . If the
wavelength difference is small enough, D t ,i jl( ) is approxi-
mately proportional to the first partial derivative of Ψ with
respect to jl ,
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Similarly, if the wavelength difference is a constant ( lD ) for all
differential RVs, the second partial derivative of Ψ is

approximately
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In principle, we can continue the above calculations to derive
higher order derivatives of Ψ from differential RVs. These
derivatives can be used to approximately reconstruct the
wavelength-dependent noise at a given time. For example, if
the dependence of noise on time and wavelength is described
by a quadratic polynomial function with time-varying para-
meters, i.e.,

t p t q t r t, , 62l l lY = + +( ) ( ) ( ) ( ) ( )

the differential RVs could approximate p(t) and q(t) according
to (4) and (5). Hence the discrete form of the above equation is
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Considering that the dependence of noise on time and
wavelength is probably much more complex than the above
case, we estimate the noise using the following equation:

t a t b c I
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where Nλ is the number of aperture divisions and thus N 1-l
is the number of independent differential RVs, dm characterizes
the linear dependence of RV noise on differential RV at

Figure 2. Data reduction and modeling process.

4

The Astronomical Journal, 154:135 (23pp), 2017 October Feng et al.



wavelength ml , which is averaged over the differential RV, a is
the acceleration caused by activity cycles or other wavelength-
dependent noise7 and b is the reference velocity. The linear
dependence of RVs on activity index Ik is parameterized by
constant ck. All these parameters are wavelength dependent
up to a certain level. This equation is equivalent to a set
of independent noise models applied to different aperture
data sets.

To predict the RV variation, we combine n Keplerian
components with a wavelength-dependent noise component to
form a basic RV model, which is

v t f t t

f t K t e

, , ,

cos cos , 9

b i j
k

n

k i i j

k i k k k i k k

1
ål l

w n w

= + Y

= + +
=

ˆ ( ) ( ) ˆ ( )

( ) [ ( ( )) ( )] ( )

where f tk i( ) is the RV variation caused by the kth planet, and Ŷ
is the estimation of the noise component. In the Keplerian
component, Kk, kw , kn , and ek are the amplitude, longitude of
periastron, true anomaly, and eccentricity for the kth planetary
signal.

According to Feng et al. (2016), the time-varying RV noise
(r(t) in our case) of M dwarfs can be well modeled using a
combination of white noise and the first-order moving average
(MA) models. However, τ Ceti is much hotter than M dwarfs
and thus the convective velocity is greater, potentially giving
rise to significant granulation and stellar oscillation signals
(e.g., Kjeldsen & Bedding 1995; Meunier et al. 2017).
Moreover, the data is sampled with high cadence and thus
probably contaminated by significant correlated noise. Thus we
consider higher order moving average models to remove the
RV noise, following MT13. We define the general moving
average model with exponential smoothing as

v t v t

w t t

, ,

exp , 10

i j b i j

k
k j i i k j i kå

l l

l t l
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where wk and τ are the amplitude and timescale of the moving
average while i k - is the residual after subtracting the data by a
realization of the basic model at time ti k- . Hereafter, we define
“nP+MA(q)+mD” as the n-planet model with qth-order
moving average and m differential RVs, which are derived
from m 1+ aperture data sets (see Figure 2). The white noise
model is denoted by MA(0).

For the 1AP1 data sets, the wavelength jl should be regarded
as an averaged wavelength. Equation (9) is still applicable
because the averaging process is a linear process, and thus the
linearity of the RV model remains. Although the moving
average model has an exponential term, the correlation
timescale τ is not sensitive to wavelength according to our
analysis. Hence we will apply Equation (9) to 1AP1 and other
aperture data sets.

For a given aperture data set, the excess white noise or white
jitter is taken into account in the likelihood
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where i j,s is the measurement noise at time ti in the jth aperture
data set, which has an averaged wavelength of jl , sJ jl( ) is the
jitter level, and vi j, is the observed RV at time ti in the jth
aperture data set.
Following Feng et al. (2016), we adopt uniform prior

distributions for most parameters except for the eccentricity and
some timescale parameters. Since the planets with highly
eccentric orbits are very rare, we adopt a Gaussian distribution
centered at zero and with a standard deviation of 0.1 (Tuomi &
Anglada-Escudé 2013). Although we set a lower limit of one
day for the orbital period, we do investigate shorter period
signals if the power of short period is high in the periodogram.
The prior distributions of all parameters are described in
Table 1.
Nearly all RV data analysis has only considered the averaged

data or 1AP1 is analyzed without accounting for wavelength-
dependent noise. Here, we demonstrate the wavelength
dependence of RV noise by applying the model defined by
Equation (10) to aperture data sets in Sections 4.2 and 4.3. In
the other sections, we will apply Equation (10) to the 1AP1 and
other data sets in order to identify Keplerian signals. The
number of Keplerian components, MA components, and
differential RVs will be chosen based on Bayesian model
comparison.

4.2. Removing Wavelength-dependent Noise

To see whether the differential RVs can reduce the
wavelength dependence of RV noise, we compare RV models
with and without differential RVs in the Bayesian framework.
We apply the RV model defined in Equations (10) and (11) to
the 3AP1, 3AP2, 3AP3, and 1AP1 data sets. Specifically, we
model the aperture data sets using the first-order moving
average and white-noise models without and with dependence
on differential RVs, which are denoted by 0P+MA(1)+0D,
0P+MA(1)+2D, 0P+MA(0)+0D, and 0P+MA(0)+2D,
respectively. To visualize the differences between various
noise models, we calculate the generalized periodograms for
the data sets and their residuals.
The generalized periodogram is calculated by maximizing

the logarithmic likelihood of a combination of sinusoidal
functions and a linear trend at a sample of frequencies. Unlike
the Lomb–Scargle periodogram, this general periodogram not
only optimizes the amplitude and phase in the sinusoidal
function but also optimizes the reference velocity and linear
acceleration for each frequency. We call this periodogram
the generalized Lomb–Scargle periodogram with floating trend
(GLST8; Feng et al. 2017a; also see Baluev 2008 and Süveges
et al. 2015), a generalization of the so-called generalized
Lomb–Scargle periodogram (GLS; Zechmeister et al. 2009).7 For example, the atmospheric absorption and/or scattering of the star light

could be wavelength dependent, leading to wavelength-dependent noise in
RVs. Considering that the linear trend in the model may be caused by stellar
activity and instrumental noise, we put it in the noise component of the RV
model.

8 The code for calculating GLST is available at https://github.com/
phillippro/agatha and a corresponding online app is at http://www.agatha.
herts.ac.uk.
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Following Cumming et al. (1999), the GLST is normalized using
the residual variance, and the FAP values are calculated
accordingly. They FAP is not accurate for signal identifica-
tion/quantification especially when the RV noise is highly

correlated in time and wavelength. Thus we only show FAPs in
the GLSTs of residuals where correlated noise is properly
modeled and subtracted. Although there are calculations of
more precise FAPs (Baluev 2008) and more sophisticated

Table 1
The Prior Distributions of Model Parameters

Parameter Unit Prior distribution Minimum Maximum

Each Keplerian Signal
Kj m s−1 K K1 max min-( ) 0 v v2 max-∣ ¯∣
Pj day P P Plogj

1
max min

- ( ) 1 t tmax min-

ej L 0, 0.1( ) 0 1

jw rad 1 2p( ) 0 2p
M0j rad 1 2p( ) 0 2p

Linear Trend and Jitter
a m s−1 yr−1 a a1 max min-( ) K P365.24 max max- K P365.24 max max

b m s−1 b b1 max min-( ) Kmax- Kmax

sJ m s−1 s s1 J Jmax min-( ) 0 Kmax

Moving Average
w L w w1 max min-( ) −1 1
τ day P logj

1
max mint t- ( ) t t1 max min-( ) 1

Activity Indices and Differential RVs
ck m s−1 c c1 k kmax min-( ) ck max- K I IX Xmax max min-( )
dm(m N1, , 1Î ¼ -l{ }) m s−1 d d1 m mmax min-( ) dm max- K D Dm mmax max min-( )

Note. The unit of ck and dm is m s−1 because the activity indices and differential RVs are normalized to zero mean and unit standard deviation before inclusion in the
model. The maximum and minimum times of the RV data are denoted by tmax and tmin, respectively. The maximum amplitude of the RV data set with respect to the
mean is denoted as v v max-∣ ¯∣ . The parameter characterizing the dependence of RV on activity indices is ck, where k denotes the names of various indices.

Figure 3.We aim to illustrate the existence of wavelength-dependent noise and the necessity of removing it using differential RVs. The interpretation of specific peaks
in plotted periodograms is not important. Rather, our concern is the consistency between periodograms of RVs and their residuals measured at different wavelengths.
Thus we show a series of different periodograms across the page. Each row of plots is given to a different wavelength range. Going down the page they are for the data
sets 3AP1, 3AP2, 3AP3 (splitting the data set into three parts), and 1AP1 (regular data set averaged over all orders). The following columns show periodograms for the
corresponding residuals after subtracting the model predictions for the 0P+MA(0)+0D (white noise), 0P+MA(1)+0D (moving average), 0P+MA(0)+2D (white
noise with differential RVs), and 0P+MA(1)+2D (moving average with differential RVs). The logarithm BF of a model with respect to the MA(0) model are shown
for the residuals of each data set after subtracting the best model prediction. The red dotted lines denote the periods at the maxima of posterior distributions.
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periodograms like the ones introduced by Baluev (2013, 2015)
and by Feng et al. (2017a), we rely on Bayesian posterior
samplings to identify and quantify signals.

The periodograms for the 3AP1, 3AP2, 3AP3, and 1AP1
data sets and their residuals after subtracting the model
prediction are shown in Figure 3. Notably we observe great
differences between periodograms for the data sets of 3AP1,
3AP2, 3AP3, and 1AP1, which indicates that wavelength-
dependent noise is an important factor. On the contrary, the
residuals of all RV data sets have similar periodograms after
subtracting the best predictions of 0P+MA(0)+2D or 0P+MA
(1)+2D from the data, indicating the essential role of
differential RVs in removing wavelength-dependent noise. In
the right two columns of panels in Figure 3, we see consistent
periodograms for residuals despite being calculated for
different noise models and aperture data sets.

For the 1AP1 data set, the differential RVs do not improve
the BF as much as the moving average model. On the other
hand, the increase of logarithmic BF by including both MA(1)
and differential RVs in the model is approximately equal to
the sum of those by including them separately (see the left three
columns). This indicates that the wavelength-dependent noise
and time-correlated noise are independent and thus should be
modeled with independent noise components. The inclusion of
differential RVs improves the fitting more for the 3AP1 and
3AP3 data sets than it does for the 3AP2 and 1AP1 data sets.
This means that the RVs measured at the middle of the
wavelength range contain less wavelength-dependent noise
than those measured at the blue and red ends of the range do.
The 1AP1 data set contains less correlated noise probably due
to a partial removal of wavelength-dependent noise by the
averaging of all spectral orders. But this noise is still significant
enough to contaminate the periodogram and thus result in
detections of noise-induced signals.

In summary, for both the 1AP1 and the other data sets, the
differential RVs are able to remove wavelength-dependent noise
and help avoiding false positives. This role of differential RVs is
rather different from that of red noise models, which are good at
removing time-correlated but not wavelength-correlated noise.
We also conduct similar analysis for the binned data sets, and
find similar results, although the wavelength-dependent noise is
greatly reduced by the binning process. Considering that τ Ceti
is a quiet main sequence star, our analysis is probably
representative. The wavelength dependence of RV noise is
probably stronger for more active stars such as Alpha Centauri
A/B (Dumusque et al. 2012). For them, differential RVs would
play a key role in detecting exoplanets consistently.

In the following sections, we will focus our analysis on the
1AP1 data set because it has higher signal to noise than
aperture data sets, and has residuals similar to those of aperture
data sets. We further study the effect of binning by comparing
the periodograms for the binned1AP1 and 1AP1 data sets and
for their residuals in Figure 4. We find that periodograms are
very different both for the RV data sets and for their residuals.
The binning of data over a one hour time span has removed
features caused by noise and signals altogether. This makes the
binned version unreliable for detecting signals.

4.3. Modeling Instrumental Noise

Like stellar activity, instrumental noise may also be colorful
because of the instrument’s potential nonlinear response to

wavelength. To model the instrumental noise in the data, we
generate the calibration data sets by combining the RV aperture
data sets measured by HARPS and reduced by the TERRA
algorithm for 172 stars that have been reduced with the
TERRA reduction and represent the most frequently observed
targets (excluding τ Ceti). Most of these RVs were measured
within the HARPS-Upgrade GTO program (Mayor et al. 2011;
Pepe et al. 2011). We derive aperture data sets and differential
RVs from these HARPS measurements, and combine them.
Specifically, we remove the (differential) RVs that have
absolute values larger than 20 m s−1 or deviate from the mean
more than 5s before combining them. For each epoch in each
aperture data set for τ Ceti, we average the calibration data
points that have nearest epochs by weighting them according to
their measurement errors. We further remove the outliers that
deviate from the mean more than 3s. There are also epochs
where no RVs of other stars are available; we assign the RVs
measured at nearby epochs. We use these calibration data sets
as proxies (like activity indices) to remove instrumental noise.
For example, we can use a linear combination of the calibration
data sets for C3AP2-1 and C3AP3-2 to model the instrumental
noise in the C1AP1 data set. Hereafter, we use cCnAPi (cnAPi)
and cCnAPi-j (cnAPi-j) to denote the calibration data sets for
CnAPi (nAPi) and CnAPi-j (nAPi-j).
Through comparing various combinations of calibration data

sets for all RV data sets, we find that the calibration data sets are
appropriate proxies to reduce the instrumental noise in the data.
Although the cC1AP1 data set is influenced by the instrument in
the same way as the C1AP1 data set, the former is
“contaminated” by Keplerian signals from other stellar systems
though the contamination is reduced by removing outliers and
averaging the data. On the contrary, the differential calibration
data sets do not contain Keplerian signals, and thus are more
appropriate for removing instrumental noise. We find that the
dependence of RV on calibration data sets is not consistent with
zero. The HARPS measurements are biased at least by
0.244 0.035

0.083
-
+ m s−1, determined by the square root of the sum of

MAP estimations of linear coefficients for all cC9AP differential
data sets. This bias is not reduced by including Keplerian
components into the model, suggesting its instrumental origin.
The real bias caused by the instrument could be higher because
the differential calibration data sets only account for the
wavelength-dependent instrumental noise. Thus the HARPS
data would not be reliable for detecting signals below 0.2 m s−1

if the instrumental noise is not properly removed.
However, not all of the cC9AP differential data sets are

useful, and the application of all of them only slightly improves
the BF with respect to the cC3AP differential data sets. For the
C3AP sets, only cC3AP2-1 is strongly correlated to the RV
data, indicating higher instrumental noise in blue spectral
orders than in red orders. In Figure 5, we show the cC3AP2-1
data set for C1AP1, and the corresponding posterior distribu-
tion for the model. We see a correlation between cC3AP2-1
and C1AP1 up to 0.15 m s−1. Hence we will use the cC3AP2-1
data set to remove wavelength-dependent instrumental noise in
the HARPS data. Hereafter we include cC3AP2-1 together with
the S-index, BIS, and FWHM indices linearly in the model
(see Equations (10) and (8)) to analyze the C1AP1 data set.
Similarly, we use c3AP2-1 to remove the instrumental noise in
the 1AP1 and CCF data sets. We select the optimal number of
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MA components and differential RVs in the following
subsection.

4.4. Choosing the Optimal Noise Model

Within the Bayesian framework, we compare noise models
with various differential RVs and MA components to
determine the optimal noise model for the C1AP1 data set.
We report the BFs with respect to the MA(0) model (without
differential RVs or any Keplerian component) in Table 2. The
optimal number of differential RVs and MA components are
selected based on the BIC-estimated BF threshold of 150 (Feng
et al. 2016). In other words, the optimal model is the most
complex model which gives a BF at least 150 times higher than
all simpler models. This is equivalent to an increase of 5 of
logarithmic BF in Table 2.

According to this criterion, the 0P+MA(4)+8D model is the
noise model favored by the 1AP1 and C1AP1 data sets.
Including more differential RVs may not reduce the noise;
rather, the noise in the differential RVs may reduce the
significance of true signals. To explain this we compare the
periodograms for the residuals of the 1AP1 data set after
subtracting the 0P+MA(4)+8D and 0P+MA(4)+71D models
in Figure 6. Guided by the power difference between FAP
thresholds in the periodograms, we see that the noise in the
residuals increases if we include more differential RVs.
Moreover, complex noise models may interpret signals as noise
due to their flexibility (Feng et al. 2016 and MT13). Based on

the above considerations, we adopt the 0P+MA(4)+8D model
to remove RV noise. We also find at most weak correlation
between noise proxies (see Appendix A), supporting the
necessity of using all of them in noise modeling. This
Goldilocks model is different from the one devised by Feng
et al. (2016) for M dwarfs because the target and data sets in this
work are different. But results both in this work and in Feng
et al. (2016) suggest the importance of finding an appropriate
noise model for each specific RV data set.
Following this approach, we further find the Goldilocks

noise models for the CCF data set to be 0P+MA(5)+8D. The
optimal noise model for the Keck data set is 0P+MA(1)+0D.
In the 0P+MA(4)+8D model; there are two free parameters for
trend, one parameter for jitter, four parameters for activity
indices and c3AP2-1, five parameters for the MA model, and
eight parameters for differential RVs. Thus there are 20 and 21
free parameters in the 0P+MA(4)+8D and 0P+MA(5)+8D
models, respectively. Since the differential RVs can weight
aperture data sets a posteriori and thus remove wavelength-
dependent noise (see Appendix B), it is unnecessary to analyze
aperture data sets separately. Hence we only analyze the
averaged data sets, C1AP1, 1AP1, and CCF, to identify signals.

4.5. Performance of the Goldilocks Noise Model

Based on visual investigation of the 1AP1 data set, we see a
rapid increase in RV around epoch JD 2453282 and decrease
around epoch JD 2456190, as shown by black points in

Figure 4. Similar to Figure 3, but for the binned1AP1 (top left) and 1AP1 (bottom left) data sets and for their residuals (right panels) calculated by subtracting the
0P+MA(1)+2D prediction from the data.

8

The Astronomical Journal, 154:135 (23pp), 2017 October Feng et al.



Figure 7. We see a steady increase of RV by 5 m s−1 and a
rapid decrease by 10 m s−1 around the above epochs. These
variations are huge compared with the sub-meter semi-
amplitudes of the signals, which we will report in the following
section. Any model that does not fit these two features would
have low likelihood, and thus not be favored by the data.

We use the Goldilocks noise model, 0P+MA(4)+8D, to
model the noise in the 1AP1 data set and show the binned
residual after subtracting the best-fitting model as red points in
Figure 7. We see that the noise model significantly reduce the
noise-induced RV variation. However, we still see weak intra-
night noise in the epochs around JD 2453283, probably caused
by the guiding error, as mentioned in Section 2. Hence the
C1AP1 data set is probably a more conservative choice for
signal detection. According to our analysis, the Keck data does
not help to constrain the signals detected in HARPS data sets.
To be conservative, we will analyze C1AP1 and CCF to
identify signals, and use Keck and 1AP1 for the sensitivity and
consistency test in the following sections.

5. Keplerian Signals

In the above section, we obtain the optimal noise model for
the TERRA-reduced HARPS data set. Since the spectral orders
of the CCF data is not available, we apply the TERRA
differential RVs to model the RV noise in the CCF data set.9

From now on, we only use the C1AP1 data set to identify
signals and use 1AP1 and CCF to test the consistency of
signals.

5.1. Primary Signals

As mentioned in Section 3, we run hot chains to find primary
signals for later investigations. We divide the period range into
20 chunks and run a hot chain to find the local posterior
maxima for each. We convert the tempered posterior to the
posterior for each chain, and combine all posteriors to

approximate the posterior distribution for the 1P+MA(4)+8D
model. We also start cold chains from the local posterior
maxima of hot chains, and combine the posteriors drawn by
cold chains. To compare with signals detected in the Keplerian
solution, we also fit sinusoidal functions to the data to obtain
circular solutions. In Figure 8, we show the distributions of
logarithmic BF (estimated by BIC at a given period) over
period for the Keplerian and circular solutions for the 1AP1
data set. We see that the strongest signals are around 160, 600,
and 1000 days. The 600 and 1000 day signals are probably
annual aliases of each other. The 114 and 318 day signals are
annual aliases of 160 days, while 226 days is an annual alias of
600 days. The signals at periods of about 20, 49, 160, 600, and
1000 days and some of their annual aliases are also significant
in the Keplerian solution.
To demonstrate the uniqueness of the primary signals,

we show the posterior distribution for two period ranges where
the signals around 20 and 49 days are identified in Figure 9. We
see that the two signals are unique and well identified by the
hot chains in the corresponding period intervals. Therefore it is
reliable to use the parameters of these signals as initial
conditions for cold chains to constrain signals simultaneously.
In Figure 10, we show the logarithmic BF distributions of

the samples drawn by cold chains for the C1AP1 and CCF data
sets. For both solutions and data sets, the signals around 160,
600, and 1000 days are most significant. The 600 day signal is
more significant than the 1000 day signal for both Keplerian
and circular solutions for both data sets. According to our
analysis, the signals at periods of 20, 49, 160, 600, and
1000 days can also be found in the 1AP1 data set and
combinations of HARPS and Keck data sets. However, the
comparison of the significance of primary signals is biased
because the one-planet model may interprets the variations
caused by multiple signals as one Keplerian signal. Thus we
will constrain these primary signals simultaneously, and
compare the results for various data sets in the following
section.

5.2. Comparing Signals Detected in Different Data Sets

Using the numerical method described in Section 3, we
obtain posterior samples from the MCMC sampling for RV
models with various numbers of Keplerian components. We

Figure 5. The normalized cC3AP2-1 calibration data set (left), and the posterior densities of the linear dependence of the C1AP1 data set on it (parameterized by cc)
for the 0P+MA(4)+8D model (right). The calibration data sets are normalized to zero mean and unit standard deviation before inclusion in the model. Thus cc is in
m s−1, characterizing the level of instrumental bias. The mode, mean, standard deviation, and higher order moments of the posterior density are also shown.

9 Although these differential RVs are produced by TERRA, they should be
able to remove wavelength-dependent noise in the CCF data since the two data
sets are rather similar, leading to at most a second-order difference in the
differential RVs produced by TERRA and CCF. Even though they produce
rather different differential RVs, we can still regard TERRA differential RVs as
a type of activity indices and consider their linear correlation with the
CCF RVs.
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select signals according to the signal detection criteria within
the Bayesian framework. The parameters of signals identified
in CCF and C1AP1 are shown in Table 3, and the BFs for the
Keplerian and circular solutions for the C1AP1 set are shown
in Table 4. The signals detected in the Keck data set are not
shown because only a signal at 20 days is identified. The
strongest signals in Keplerian solutions for both data sets have
orbital periods around 1000 days and 600 days. Since they
are annual aliases, we report the results for both in the table.
We find that the eccentricities of these two signals are high for
CCF but are below 0.2 for C1AP1. This indicates that the high
eccentricity is probably caused by the noise in the observation
epochs before JD 2453500 (see Figure 1), which are included
in CCF but not in C1AP1.

Highly eccentric and low-mass exoplanets are very rare
(Tuomi & Anglada-Escudé 2013), which is evident from the
distribution over the mass and eccentricity of all exoplanets
detected through the RV technique in Figure 11. Although
there are many biases in a plot like this and particularly at low
masses and high eccentricities, we do see a lack of planets with
low mass, long period, and high eccentricity like the 1000 day
signal we have identified in this work. Thus the high-
eccentricity solutions reported in Table 3 are probably not
caused completely by planets orbiting the star but are
superpositions of planets and activity. The activity and signals
are not completely disentangled probably because of incom-
plete noise modeling or inefficiency of the MCMC sampling,
which makes the chain unable to jump out of local maxima to
find extra low eccentric signals. We investigate the former by
adding more MA components to the noise model, but fail to
reduce the eccentricity. Then we investigate the latter by
finding signals with zero eccentricity, which makes the MCMC
chains achieve convergence more efficiently due to reduction in
dimensionality. Based on the Bayesian model comparison, the
circular solutions identify more signals than the Keplerian
solutions because the sinusoidal function has fewer parameters
than the Keplerian function and thus is less penalized by the
BIC. We find consistent circular solutions of five signals for all
data sets. The 92 and 102 day signals are probably an alias pair
since the subtraction of one from the data would weaken the
other. The 92 day signal may be genuine because it is identified
in circular solutions as well as the Keplerian solution for CCF.
Notably the posterior of the 92 day signal is rather low in the
Keplerian and circular solutions because it does not pass the BF
threshold as a primary signal, as shown in Figure 10.

For both of the circular and Keplerian solutions, we find that
the 600 day signal is favored over the 1000 day signal for all
data sets. This also leads to a slightly higher amplitude
of the 600 day signal with respect to the 1000 day signal (see
Table 3). Moreover, the 160 day signal is very eccentric

(e=0.96) in the 1000 day solution for C1AP1. Thus the long-
period signal probably has a period around 600 days, if it is
caused by a planet. This signal could be confirmed by further
observations of the inner edge of the debris disk of τ Ceti by
the Atacama Large Millimeter/sub-millimeter Array (ALMA;
MacGregor et al. 2016). If the inner edge is found to be beyond
1.5 au, this planet must exist to clear the inner disk. As for
the other signals, we regard the 20 day signal as a genuine
planetary candidate since it is also identified independently in
the Keck data set. The signal around 160 days is Keplerian
because it is the most significant signal in the circular solutions
and is consistently identified in all HARPS data sets. The signal
at a period of 49 days is Keplerian because it is identified in all
data sets. There could be a signal at a period of about 92 days
or 102 days. But the confirmation of this requires further
observations and analysis. These results are also valid for the
1AP1 data set and combinations of HARPS and Keck data sets
according to our analysis.

5.3. Curse of Eccentricity

Although the eccentricity of the 600 day signal is low for the
C1AP1 data set, the other signals have eccentricities that are
not consistent with zero. We also add extra Keplerian signals to
the Keplerian solutions for the C1AP1 and CCF data sets, but
the high eccentricity of signals persists. To decide whether the
signals are time dependent, we evenly divide the time span of
the 1AP1 data set into three chunks, and obtain Keplerian
solutions for each. We find that the jitter level for the first
chunk is about 0.3 m s−1 higher than the other two chunks. The
jitter may significantly dilute the signal in the first chunk
because they have comparable semi-amplitude, which is
around 1 m s−1. The 1000 day signal is identified in the second
and third chunks, although it is rather eccentric in the third
chunk. The 600 day signal is identified in the third chunk. The
49 and 160 day signals are identified in the third chunk. The
20 day signal is found in all chunks while the 14 day signal is
only significant in the first chunk. This is probably the reason
why MT13 has identified the 14 day signal rather than the
20 day one based on analyses of early data. This apparent
inconsistency of signals is unsurprising because they are
signals with semi-amplitudes of at most 0.5 m s−1 and require
large samples to confirm. Although chosen based on analyses
of the whole HARPS data, the 1P+MA(4)+8D model is
applied here to different chunks, which probably lead to false
negatives.
We investigate this by dividing the 1AP1 data into three

chunks, applying the 0P+MA(2)+2D noise model to each, and
constraining signals using the whole data set. In the period-
ogram for the residual after subtracting the noise model
prediction, we are able to identify all signals despite the noise

Table 2
BIC-Estimated BFs of Noise Models (Without Keplerian Component) for the C1AP1 Data Set

MA(0) MA(1) MA(2) MA(3) MA(4) MA(5) MA(6)

0D 0.00 2234.55 2506.11 2606.66 2648.22 2649.77 2645.32
2D 411.11 2576.22 2840.77 2961.32 3013.88 3016.43 3011.98
5D 504.77 2596.88 2868.43 2989.98 3041.54 3041.09 3039.65
8D 537.43 2609.54 2883.09 3005.65 3053.20 3056.75 3053.31
17D 548.41 2596.52 2867.08 2994.63 3043.18 3044.74 3041.29

Note. The relative maximum logarithm likelihood for each model with respect to the white noise model (i.e., MA(0)) is shown. The BF of the Goldilocks noise model
is shown in boldface.
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parameters varying with chunks. This suggests that the signals
we have identified are probably not caused by activity cycles.

5.4. Instrumental Bias of HARPS

The above investigations of the cause of high eccentricity
are concerned with the removal of activity-induced noise from
the data. In this section, we will study the excess instrumental
noise caused by the instability of HARPS in the sub-m/s
regime. We model this noise using the moments of the HARPS
line profiles, which probably reflect the flux loss caused by
instrumental effects such as guiding errors (Berdiñas et al.
2016). Following Berdiñas et al. (2016), the moments are
calculated in the following steps:

1. The fluxes of all spectra are scaled such that the relative
flux in each echelle order is the same.

2. The spectrum recorded in all echelle orders is decon-
volved to obtain a mean line profile Fi(t) in absorption.
After subtracting the residual continuum w(t), the line
profile is inverted and normalized to be a flux distribution
represented by N flux values fi(t) and RVs vi(t).

3. The moments are calculated according to the following
equations,
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To minimize excess instrumental noise, we use the central
moments together with M0 because the non-central moments
contain a certain amount of information from Keplerian signals.
Although the central moments attempt to minimize the mean
velocity contribution by subtracting M1, M1 is not perfect at
removing Keplerian velocities. So we only use central
moments to investigate the instrumental noise rather than to
quantify signals before performing any robust tests on the
connection between moments and RVs.
We linearly combine M0, M3c, M4c, and M5c,

10 activity
indicators, calibration data sets, and differential RVs in the
model, and find strong correlations between RVs and these
moments. For example, we use this new noise model to
constrain the 160 day signal, which is identified in the C1AP1
data set. We find that the linear dependence of RVs on
the normalized M0, M3c, M4c, and M5c are around
−0.17±0.02m s−1, −0.62±0.02m s−1, 0.16±0.02m s−1,
and −0.28±0.02m s−1, respectively.11 In particular, these
moments increase the logarithm BF by more than 1000 for all
data sets. We show this strong correlation between RVs and
moments for the C1AP1 data set in Figure 12. We observe
strong anti-correlations between RVs and odd-order moments
that have terms proportional to M1- . This indicates that the
subtraction of M1 from velocities (see Equation (14)) may not
completely remove the Keplerian components, leading to a
considerable correlation between RVs and central moments. We
apply the four moments to all data sets by including them into
the model linearly. We find that the strong signals shown in
Table 3 are still significant with this noise model.
To explore the correlation between the moments and

calibration data sets, we show their time series around JD
2453283 and JD 2456195 as done for Figure 7. We see strong
correlation between RV and various proxies over timescales

Figure 6. Comparison between the periodograms for the residuals of the 1AP1 data set after subtracting the 0D+MA(4)+8D (left) and 0D+MA(4)+71D (right)
prediction. The horizontal lines denote the FAPs of 0.1,1, and 0.001.

10 We do not use M2c because it is equivalent to FWHM.
11 These values are the mean and standard deviation of the posterior samples
drawn by cold chains, and thus are different from the Pearson coefficients
shown in Figure 12.
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longer than one epoch. The Pearson correlation coefficients
between RVs and proxies for the epochs around JD 2453283
are −0.40, −0.36, 0.28, −0.02, and 0.02 for the M0, Mc3, Mc4,
Mc5, and cC3AP2-1, respectively, while the coefficients are
0.06, −0.73, 0.43, −0.50, and 0.32 for the other epochs. The
rapid increase and decrease during these two epochs are clearly
seen in other proxies. Thus the instrumental bias is probably the
main reason why we find high eccentricity in Keplerian
solutions even though the application of the noise model is able
to significantly reduce such noise (see Figure 7). However,
there are also strong variations in moments within one
observation night, which do not appear in the RVs. This
short-term variation may be caused by the change of τ Ceti’s
altitude, which modulates the intensity of the atmospheric
absorption of the stellar light. Further studies are required to
understand these variations before using the moments as noise
proxies. In Figure 13, we observe that the c3AP2-1 data set
decreases around JD 2456195 as the RVs do. Since no RVs of
the 172 stars were measured or published around epoch JD
2453283, we assign the calibration data points at nearby epochs
to them.

Although the moments correlate with RVs up to 0.5 m s−1,
the inclusion of them in the model may have both positive and
negative effects on the identification and quantification of
signals because of the possibly incomplete subtraction of
Keplerian variation from moments. Considering these pro-
blems, we have only used them to test the sensitivity of signal-
to-noise models.

6. Planetary Candidates

6.1. Four-planet System

According to the analyses in Section 5, we conclude that the
signals with periods of 20, 49, 160, and 600 days are genuine
Keplerian candidates. To further confirm them as Keplerian
candidates, we check whether these signals could be caused by
activity. We show the periodograms of the C1AP1 and Keck
data sets, activity indices, differential RVs, and the signals in
Figure 14. Although there are some peaks around 600 and
1000 days in the periodograms of observation times of the
Keck data, 9AP6-5 and 9AP2-1, they are either minor peaks or
only strong in one or two noise proxies. Notably the 1000 day
signal is rather strong in the periodogram of 9AP6-5 despite a
considerable probability of random overlap between the signals
in the data and the powers in noise proxies. The 160 day signal
is strong in the S-index but does not appear in other proxies.
The periodograms both for C1AP1 and for Keck show strong
peaks around 20 days, strongly suggesting it as a genuine
Keplerian signal. Other signals are not found to be strong in the
Keck periodogram probably due to the large uncertainty and
small sample of Keck measurements. These signals have mean
semi-amplitudes below 0.5 m s−1,12 which is beyond the
detection ability of Keck.

Figure 7. RVs of all observation epochs (top) and for epochs around JD 2453283 (bottom left) and JD 2456195 (bottom right) for the 1AP1 data set. The bottom two
panels show the RVs measured in the time spans denoted by the green lines in the top panel. The black and red dots with error bars represent binned RVs and binned
residuals after subtracting the best-fitting noise model, respectively.

12 The mean semi-amplitudes of the Keplerian signals are equal to the semi-
amplitudes determined in the circular solutions, which are shown in the right
columns of Table 3.
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Since the 600 day signal has low eccentricity in the Keplerian
solution for the C1AP1 data set, we show the parameters of the
five signals identified in it in Table 5. The boundary of
uncertainty intervals, 1%q and 99%q , are determined at the
cumulative marginalized posterior probability of 1% and 99%.

Specifically, they are determined by P d 1%
min

1% ò q q =
q

q
( ∣ ) and

P d 99%
min

99% ò q q =
q

q
( ∣ ) , where minq is the minimum value of

parameter θ.13 The uncertainties of parameters are probably
larger than the reported values because the mean values of
parameters slightly depend on the choice of data set as shown in
Table 3. In Table 5, we observe that all five planets have
minimum masses less than 5 MÅ. In particular, τ Ceti g and h
have minimum masses comparable with the Earth. τ Ceti h, e,
and f have considerable eccentricities. The causes could be the
instrumental noise we have investigated in Section 5 and the bias
in the estimation of eccentricities since eccentricity is positive
definite (Zakamska et al. 2011). The planetary masses would be
double the minimum masses if the best-fitting inclination for the
debris disk of τ Ceti (around 30°) is equal to the inclination of
the planetary system (Lawler et al. 2014). Our detection of these
small planets at such long orbits demonstrates the potential
power of the RV technique in finding Earth analogues. The RV
variations caused by these planets have mean semi-amplitude as
low as 0.3 m s−1, which is close to the 0.1 m s−1 limit required
for detecting Earth analogues around solar analogues.

If we regard the measurements in a 15 minute time bin as
independent observations (e.g., Mayor et al. 2003 and O’Toole
et al. 2008), there would be 662 observations for the C1AP1
data set. The K N K RV Nrms obs= ´ ratio for signals with
K=0.3 m s−1 is 7.3, where RVrms is the standard deviation of
the RVs after removing the best fitted trend and the correlation

with noise proxies. This is close to the detection threshold of
7.5 based on the RV challenge results (Dumusque et al. 2017).
Considering that our team has detected signals with K N 5=
without announcing false positives in the RV challenge, our
detection of small signals is reliable and is consistent with
previous analyses.
We also show the phase-folded data and model prediction

for all signals in Figure 15. We see that the data strongly
support the existence of four signals.To see whether there are
extra signals in the data, we subtract the best-fitting model (the
600 days Keplerian solution shown in Table 3) from the
C1AP1 data, and show the GLST of the residual in Figure 16.
We do not see any strong signals, supporting the fact that the
six-planet model is not favored by the data.
Apart from the HARPS data set, we also combine the RVs

measured by the Anglo Australian Telescope (AAT; the data is
available in MT13) and Keck with HARPS. We find results
consistent with the five-planet solution. Thus the weak wobbles
found in HARPS data are consistent with other data despite not
being identified independently due to the relatively lower RV
precision of other instruments.

6.2. Comparison with Previous Studies

The planetary candidates we have identified partially overlap
with the ones found by MT13. We find two new planetary
candidates with periods around 20 and 49 days, but fail to
confirm the signals around 14 and 35 days. Although there is
evidence for the existence of the signal at around 92 days, we
cannot confirm it as a Keplerian candidate because it cannot be
consistently identified in all data sets and solutions. The signal
around 14 days becomes weak when we subtract the 20 day
signal from the data. But the opposite is not true, suggesting a
non-Keplerian origin of the 14 day signal. Nevertheless, the
14 day signal does exist in some Keplerian and circular

Figure 8. Logarithmic BF distributions of the samples drawn by the cold chains for the Keplerian (left) and circular (right) solutions of the 1P+MA(4)+8D model for
the C1AP1 data set. There are 10,000 samples randomly drawn from the each cold chain. The periods of some local maxima are denoted by red lines and numbers. If
two maxima are close to each other, we only show the one with higher posterior. The BIC-estimated logarithmic BF threshold of 5 is denoted by the dashed line in
each panel.

13 Actually, the formula expressed here should be expressed in a discrete form
because we calculate the intervals using MCMC samples.
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solutions after accounting for the 20 day signal. In addition, by
evenly dividing the data into three chunks, we find that the
14 days is significant in the first chunk while the 20 days is
significant in the second and third chunks. Since MT13 only
analyzed the first two chunks, it is expected that they find the
14 day signal to be favored. However, as we have mentioned
in Section 5.3, the first chunk is problematic because of its
high jitter level and the abnormal variation of FWHM before
JD 24503280. Moreover, this chunk contains high-cadence
asteroseismology data which is influenced by guiding errors.
Considering these factors, the 14 day signal is probably an
activity-induced signal rather than an alias of 20 days.

The 35 day signal reported by MT13 or the 32 day signal
identified in this work is very weak in the C1AP1 data set (see

Figure 8). Moreover, the 35 day signal identified by MT13 is
close to the rotation period of 34 days determined by Baliunas
et al. (1996), although this rotation period is not significant in
the periodograms for activity indices and for differential RVs
(see Figure 14). We also find that the alias of the 600 day
signal, located at around 1000 days, fits the data as well as the
600 day signal if high eccentricity is allowed (see Table 4).
The semi-amplitudes of signals identified in this work are

from 0.4 to 0.5 m s−1. These values are lower than the values
reported by MT13, which are from 0.58 to 0.75 m s−1. In the
analysis of MT13, the activity-induced variation is probably
misinterpreted as signals because of insufficient noise model-
ing. Moreover, the periods of signals in this work are different
from the values reported by MT13. This difference together

Figure 9. Logarithmic likelihood ratio of the 1P+MA(4)+8D model and the 0P+MA(4)+8D model based on the 3.8 million posterior samples drawn by hot chains
for the period intervals of 13.5, 20.9[ ] days (left) and 32.24, 49.76[ ] days (right) for the C1AP1 data set. Each period range is divided into 1000 bins, and the maximum
posterior is determined for each bin. The posterior distributions shown here are linear interpolations of these posteriors. The 10%, 1%, and 0.1% quantiles of the
maximum logarithmic likelihood ratio are denoted by dashed lines. Note that the likelihood ratio determined by hot chains does not represent the real one.

Figure 10. Similar to Figure 8, but for cold chains for the C1AP1 and CCF data sets.
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with the other differences are probably caused by the following
factors.
First, the HARPS RV sample used in this work is double the

size of the sample (4398 RV points) used by MT13. Although
MT13 have also used the Keck and AAT samples, both of them
have larger uncertainties and have less than 1000 measure-
ments. The updated HARPS data set allows us to find weaker
signals, and quantify signals more accurately. In addition, the
early HARPS data are found to be more noisy than recent ones
according to our analyses. This could also be the reason why
MT13 have identified somewhat different signals.
Second, we use the differential RVs to remove wavelength-

dependent noise in the data. Although the aperture data sets are
not available for the Keck data, the signal is mainly constrained
by the HARPS data (see Figure 15) where the noise is properly
modeled by differential RVs (see Figure 3). In addition, we test
different noise models and select the best one for each data set
to avoid false negatives and positives.
Third, we estimate the BF using the BIC, which penalizes

complex models more strongly than the Akaike information
criterion (AIC) and the truncated posterior mixture (TPM) used
in MT13. According to the comparison of various BF
estimators by Feng et al. (2016), the BIC is more conservative
in estimating the BF than the AIC and TPM estimators because
it assumes that all parameters are equally free. However,
this might not be appropriate due to the nonlinear combination
of Keplerian parameters, leading to the unequal ability of
parameters to improve the fitting. For example, the likelihood is
not as sensitive to the eccentricity as it is to the period. This can
be seen in Table 5 where the relative uncertainty of eccentricity
is much larger than that of the period. As there is no universal
method to calculate the BF, and we regard the BIC as a
practical and conservative diagnostic tool to confirm signals.

6.3. Dynamical Stability and Habitability Analysis

We now assume that the detected signals correspond to
planets orbiting τ Ceti. We analyze the dynamical stability of
the planetary candidates using the threshold of Lagrange
stability introduced by Barnes & Greenberg (2006). We
calculate the instability boundary in the phase space of
eccentricity and semimajor axis using the MAP estimation of
the parameters of candidate planets, and show the results in
Figure 17. Although the orbits of candidates are eccentric, the
system is dynamically stable. As we have shown in Section 5.4,
the high eccentricity is probably caused by instrumental noise.
The eccentricity of the planetary candidates might be over-
estimated because eccentricity is definitely positive (Zakamska
et al. 2011). Considering the overestimation of eccentricity,
the stable region (or the gap between shaded regions) could be
larger than that in the figure. On the other hand, the stable
region would shrink if the true masses of these candidates
are much larger than their minimum masses. But the area of the
shaded regions are more sensitive to eccentricity than to the
mass according to Equation (2) in Barnes & Greenberg (2006).
Therefore we consider the Lagrange stability shown in
Figure 17 to be a conservative illustration of the dynamical
stability of the planetary system.
The four-planet system is dynamically packed, which is

probably due to the effect of planet–planet scattering
(Raymond et al. 2009). Our result is consistent with an inner
edge as low as 1.6 au determined by ALMA observations

Table 3
MAP Estimation of the Parameters of Signals for the CCF and C1AP1 Data Sets
and for Both Keplerian (Left Columns) and Circular Solutions (Right Columns)

Keplerian Circular

CCF C1AP1 CCF C1AP1

P1 1007.66 995.78 1015.25 942.68
597.02 636.13 598.55 619.39

K1 0.70 0.39 0.30 0.26
0.68 0.35 0.43 0.36

e1 0.46 0.30 L L
0.58 0.16 L L

P2 164.38 161.40 164.28 162.99
164.22 162.87 164.72 163.42

K2 0.53 4.65 0.44 0.49
0.48 0.55 0.47 0.51

e2 0.26 0.96 L L
0.18 0.18 L L

P3 20.03 20.03 20.03 20.01
20.04 20.00 20.03 20.03

K3 0.47 0.42 0.41 0.46
0.49 0.49 0.39 0.43

e3 0.18 0.11 L L
0.25 0.06 L L

P4 49.47 49.29 49.36 49.37
49.38 49.41 49.48 49.50

K4 0.45 0.48 0.38 0.32
0.42 0.39 0.42 0.42

e4 0.28 0.29 L L
0.22 0.23 L L

P5 91.59 102.43 92.29 91.97
91.97 91.34 91.65 91.72

K5 0.52 0.46 0.27 0.28
0.32 0.45 0.32 0.30

e5 0.53 0.15 L L
0.27 0.40 L L

P6 L L 6.63 L
L L 6.63 31.68

K6 L L 0.28 L
L L 0.25 0.30

e6 L L L L
L L L L

P7 L L 14.21 L
L L 14.22 L

K7 L L 0.27 L
L L 0.19 L

e7 L L L L
L L L L

Note. The parameters shown are the period (P in days), semi-amplitude (K in
m s−1), and eccentricity (e) of the signals. For circular solutions, only semi-
amplitude and period are shown. For each signal, the parameters are estimated in
combination with the ∼1000 day and with the ∼600 day signals are shown in
upper and lower entry, respectively, for each parameter and data set. The solutions
are obtained based on at least 4 million MCMC samples.
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(MacGregor et al. 2016). The dynamical simulations of the
planets reported by MT13 show that the previously reported
five-planet system is stable over long timescales (Lawler et al.
2014). This indicates that the four-planet system reported in
this work may also be stable for a long time since both systems
are tightly packed and the outer planets have similar
semimajor axes.

We analyze the habitability of the planets by calculating the
habitable zone according to the method introduced by
Kopparapu et al. (2014). We adopt the effective temperature
and luminosity of the τ Ceti measured by Santos et al. (2004)
and Pijpers (2003), which are 5344 K and 0.52 L, respec-
tively. We find, for a one-Earth-mass planet, the conservative
habitable zone of τ Ceti is from 0.70 to 1.26 au while the
habitable zone for a five-Earth-mass planet is from 0.68 to
1.26 au. Thus none of the reported planets reside in this
conservative zone. If one instead takes the recent Venus and
early Mars limits of the habitable zone as 0.55 and 1.32 au then
τ Ceti e and f are close to the inner and upper boundary of the
optimistic habitable zone. However, τ Ceti e and f are probably
not dynamically habitable. The ALMA observations of τ Ceti
suggests the existence of a broad debris disk (MacGregor et al.
2016). The large amount of asteroids and comets in the disk
may be strongly perturbed by planets, leading to an impact rate
10 times higher than that on the Earth (Greaves et al. 2004). On

the other hand, the impact rate on these planets may depend not
only on the mass of the scattered disc but also on the structure
of the planetary system and the interstellar environment (Feng
& Bailer-Jones 2014). Thus, comprehensive studies on the
dynamics of the τ Ceti system are important for understanding
its habitability.

7. Discussions and Conclusions

We analyze the RV data of τ Ceti in a Bayesian framework.
We find strong dependence of the RV noise on wavelengths or
orders. This colorful noise cannot be removed by averaging all
spectral orders, and would cause inconsistent results if not
removed. To model this noise, we introduce a wavelength-
dependent noise model by linearly combining moving average
models with differential RVs. We apply this model to aperture
data sets, and find that the differential RVs efficiently remove
wavelength-dependent noise, reducing the false positive and
negative rate. We also find that binning RVs over time would
change both the signals and noise in the data due to the lack of
an appropriate weighting function. Therefore, we propose a
combination of moving average models and differential RVs to
model the time and wavelength-dependent noise in unbinned
RV data sets.
Our findings challenge the traditional methods that only

account for wavelength-independent noise. This means that the
planetary candidates with semi-amplitudes around 1 m s−1

found in previous studies may require further confirmation
by applying differential RVs to noise modeling. New data
reduction algorithms are needed to extract aperture data
sets from Doppler measurements for various instruments.
Another application of differential RVs is concerned with the
diagnostics of stellar activity. Aperture data sets provide
abundant information for the study of stellar physics. The
spectral powers of differential RVs are wavelength dependent
(as shown in Figure 15), suggesting the colorfulness of stellar
activity. Further investigations are necessary to confirm
differential RVs as signatures of the spectral and photometric
variations of stellar surfaces. On the other hand, our work
focuses only on the analysis of the large RV data for τ Ceti.
Further studies on the connection between differential RVs and
stellar activity for various types of stars and instruments are
needed to extend the wavelength-dependent noise model
proposed in this work.
We apply the noise model to various RV data sets and get

Keplerian and circular solutions. Both solutions consistently
identify the signals around 600, 160, 20, and 49 days for all data
sets. For the Keplerian solutions, the strongest signal has a period
of either around 600 days or around 1000 days, which are aliases
of each other. The 600 day signal is probably a genuine signal

Table 4
Logarithm BFs Estimated by the BIC for Models with Various Numbers of Planets with Respect to the Noise Model

Number of Planets 1 2 3 4 5 6

Keplerian solution (∼1000 days) 46.6 89.7 191 219 L L
Keplerian solution (∼600 days) 63.7 85.3 126 152 L L
Circular solution (∼1000 days) 11.6 59.1 95.3 203 112 L
Circular solution (∼600 days) 26.8 72.6 104 118 125 134

Note. The signals are identified in the Keplerian and circular solutions for the C1AP1 data set. The period of the long-period signal is shown in brackets. Note that the
logarithm BF threshold is 5.

Figure 11. Distribution of orbital periods and masses of the candidate planets
detected in the C1AP1 data set (triangles) and all exoplanets detected by the
radial-velocity technique (small dots). To compare the τ Ceti candidate planets
with solar system planets, the parameters of the Venus, Earth, Jupiter, and
Saturn are shown in open circles from left to right. The eccentricity is encoded
in the color of the points. The data are collected from the Extrasolar Planets
Encyclopaedia (http://exoplanet.eu).
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Figure 12. Correlation between RVs and M0, M3c, M4c, and M5c for the C1AP1 data set. The Pearson correlation coefficient is shown in the top right corner.

Figure 13. Normalized binned RVs, moments, and c3AP2-1 data set (CDS) around epochs of JD 2453283 and JD 2456195 for the 1AP1 data. The binning windows
for the left and right panels are 0.05 days and 0.5 days, respectively. The c3AP3-2 data set around JD 2453283 is set to the value of nearby epochs since no calibration
stars are available around this epoch. The mean of each time series is shown by the horizontal dashed line while all time series are shifted up/down for visualization.
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because it is favored over 1000 days for the circular solutions.
Moreover, the eccentricity of the former is low for some data sets,
while the latter is highly eccentric for all data sets. Nevertheless,

significantly eccentric signals exist in all Keplerian solutions. The
relevant results and data are available at http://star-www.herts.
ac.uk/~ffeng/HD10700_supplementary/tau_ceti_results/.

Figure 14. GLSTs of the data, activity indices of Keck (top panels), C1AP1 (middle and bottom panels), and differential RVs (bottom panels). The 600 and 1000 day
signals and the signals constrained in combination with the 600 day signal for the C1AP1 data set (see the fifth column of Table 3) are shown by the red dotted lines.
We have truncated the periodograms at a period of 10 days to optimize visualization.

Table 5
The MAP Estimation of the Parameters for Four Signals Detected in the C1AP1 Data Set

Parameters τ Ceti g τ Ceti h τ Ceti e τ Ceti f

P (days) 20.00 [19.99, 20.02] 49.41 [49.31, 49.49] 162.87 [162.41, 163.95] 636.13 [588.44, 647.83]
K (m s−1) 0.49 [0.38, 0.56] 0.39 [0.33, 0.54] 0.55 [0.46, 0.68] 0.35 [0.23, 0.45]
e 0.06 [0.00, 0.19] 0.23 [0.08, 0.39] 0.18 [0.04, 0.36] 0.16 [0.00, 0.23]
ω(rad) 6.90 [5.42, 7.53] 0.13 [−0.71, 0.78] 0.39 [−0.41, 1.68] 2.09 [0.86, 2.81]
M0(rad) 7.04 [6.67, 8.65] −1.27 [−1.84, −0.52] 6.21 [5.27, 7.37] −0.68 [−1.32, 0.30]
m isin ( MÅ) 1.75 [1.35, 2.00] 1.83 [1.57, 2.51] 3.93 [3.29, 4.76] 3.93 [2.56, 4.98]
a(au) 0.133 [0.131, 0.134] 0.243 [0.240, 0.246] 0.538 [0.532, 0.544] 1.334 [1.290, 1.351]

Note. The uncertainties of parameters are denoted by the lower and upper bounds of the intervals, which are determined at the 1% and 99% quantiles of the posterior
density. To estimate the semimajor axis a and the minimum mass of planet m isin , we set the mass of τ Ceti to be M0.783 0.012  (Teixeira et al. 2009). To be
consistent with the names used by MT13, the new signals at periods of 20 and 49 days are named τ Ceti g and h.
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By dividing the data into chunks, we see the sensitivity of data
to signals varying with time. But all signals can be found if we fit
the same Keplerian component and independent noise components
to data chunks. Moreover, we have also studied the instrumental
noise in HARPS, and find that the HARPS data is biased at the
level of at least 0.2m s−1. The central moments of the spectral line

profile are also found to be strongly correlated to the data at the
level of at least 0.5m s−1. Future studies are required to confirm
whether or not the correlation is caused by the Keplerian variation
left in the central moments due to the dependence of RVs to
spectral flux. The signals we have identified are robust to the
inclusion of central moments in the noise model.

Figure 15. The phase-folded data and the best model prediction for each signal for the C1AP1 data set. The data and the binned version are shown as small and big
dots. The MAP estimation of the four signals are based on 8 million posterior samples drawn by a cold chain.

Figure 16. GLSTs for the C1AP1 data set after subtracting the best-fitting 0P+MA(4)+8D (left) and 5P+MA(4)+8D (right) model. The signals are denoted by the
red dotted lines. Since the correlated noise is subtracted, the FAPs of 0.1, 1, and 0.001 are shown by dashed lines as a metric to measure the significance of signals.
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The planetary candidates found in this work partially overlap
with those detected by MT13. With more HARPS measure-
ments and wavelength-dependent noise models, we improve
the estimation of the 600 and 160 signals identified by MT13.
We also find two new planets together with the 1000 days alias
of the 600 day signal but fail to confirm the other two planetary
candidates proposed by MT13. Since the signal at a period of
92 days cannot be consistently identified in all data sets, we
do not confirm it as a planetary candidate. These differences
suggest that we should be very cautious about the interpretation
of sub-m/s signals detected in large and high-cadence data
sets. For example, the signals identified around α Centauri B
(Dumusque et al. 2012) are found to arise from the window
function (Rajpaul et al. 2015).

Our analysis of the dynamical stability of the four-planet
system suggests that τ Ceti h, e, and f should have
eccentricities lower than their values determined in this work
if they are genuine planets. Although τ Ceti e and f are located
close to the boundaries of the optimistic habitable zone, their
habitability might be strongly reduced by the bombardments
of objects from the massive scattered disc. The determination
of the inner boundary of this scattered disc may help to
confirm the existence of the 600 days candidate. If the
scattered disc and the planetary system are coplanar, the true
masses of these planetary candidates are double the minimum
masses reported here (Lawler et al. 2014; MacGregor et al.
2016).

Our detection of Keplerian signals as low as 0.4 m s−1

demonstrates the unique role of the RV technique in detecting
Earth analogues around Sun-like stars. Unlike the transit
technique, the RV method does not require the occurrence of
transits, and can be useful to detect planets around all bright
stars. With the development of high-precision spectrometers,
advanced statistical methods and noise models, it is feasible to
find Earth analogues in the coming decade. Since the weak
wobbles caused by Earth analogues are comparable to the
measurement uncertainties and jitter levels, it is crucial to build

appropriate noise models to avoid both false positives and
negatives. Our work on modeling wavelength-dependent noise
is intended as a step toward a noise model framework where
physics-motivated models and stochastic processes are prop-
erly combined to remove RV noise.
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The authors gratefully acknowledge the HARPS-ESO teams’
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processing that made this work possible. Finally, the authors
would like to thank the anonymous referees for their valuable
comments that enabled considerable improvements of the
manuscript.

Appendix A
Correlation between Noise Proxies

We test the correlation between the linear coefficients of
noise proxies during the fitting. We randomly select 1000
samples from the MCMC chain for the 4P+MA(4)+8D
Keplerian solution (with the 600 day signal identified) for the
C1AP1 data set and show the correlations between the linear
coefficients of various noise proxies in Figure 18. Most noise
proxies are independent of one another. There are weak
correlations between differential RVs derived from nearby
spectral orders because of much common noise shared by
them. Nevertheless, such a correlation may not cause the
so-called “collinearity” problem, considering that the MCMC
chains show no evidence for non-convergence. Moreover,
the application of noise proxies in fitting is seen in the
analysis of Kepler light curves (e.g., Foreman-Mackey et al.
2015).

Appendix B
Wavelength dependence of Model Parameters

To explore the wavelength dependence of noise model
parameters, we apply the 0P+MA(4)+8D model to 9AP
aperture data sets. We show the dependence of the MAP
estimations of parameters and uncertainties on the mean
wavelength of aperture data sets in Figure 19. We see strong
wavelength dependence of jitter sJ and reference velocity b.
Thus a simple average of all spectral orders would introduce
wavelength-dependent noise without a proper weighting func-
tion. We also see weak wavelength dependence of the trend
a and FWHM cf. Notably, we observe strong wavelength
dependence of differential RVs. For a given aperture data set, the
coefficients for the differential RVs with shorter and longer
wavelengths always have opposite signs because they are
adjusted to fit the aperture data set. For example, the coefficients
for 9AP2-1, 9AP3-2, 9AP4-3, 9AP5-4, and 9AP6-5 are positive
while the other differential RVs are negative in the analysis of
9AP6. Hence differential RVs have “re-weighted” aperture data
sets such that the color difference between aperture data sets
disappears. This is also the reason why the periodogram
difference between aperture data sets disappears if we include
differential RVs in the model (see Figure 3).

Figure 17. Lagrange stability of planets around τ Ceti. The shaded region
represents the unstable orbits around a planet. The signals around 20, 49, 160,
and 600 days are quantified simultaneously in the five-planet solution for the
C1AP1 data set, and are denoted by red dots with error bars (measured at the
1% and 99% quantiles of posterior density). The shaded regions denote the
parameter space of unstable orbits.
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Figure 18. Correlation between noise model parameters based on 1000 samples randomly drawn from 4 million posterior samples of the 4P+MA(4)+8D model for
the C1AP1 data set. In this Keplerian solution, the signals have periods of 49.5, 91.7, 20, and 597 days. The Pearson correlation coefficient is shown in the top left
corner for each panel. The parameters of cs, cb, cf, and cc are the linear coefficients of S-index, BIS, FWHM, and cC3AP2-1. The other parameters are linear
coefficients of differential RVs derived from 9AP aperture data sets. All parameters are in units of m s−1.
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Figure 19. MAP estimation of parameters varying with wavelength for the 9AP data sets. The error bars are determined by the 1% and 99% quantiles of the posterior
densities. The MAP estimation of parameters for the 1AP1 data set and corresponding uncertainties are denoted by solid and dashed lines, respectively. The variation
of di (i 1 ,..., 8Î { }) with wavelength is step-like because two differential RVs with close wavelength ranges are derived from the same aperture data set but with
opposite signs.
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