1,603 research outputs found

    Cyclic Markov chains with an application to an intermediate ENSO model

    Get PDF
    We develop the theory of cyclic Markov chains and apply it to the El Niño-Southern Oscillation (ENSO) predictability problem. At the core of Markov chain modelling is a partition of the state space such that the transition rates between different state space cells can be computed and used most efficiently. We apply a partition technique, which divides the state space into multidimensional cells containing an equal number of data points. This partition leads to mathematical properties of the transition matrices which can be exploited further such as to establish connections with the dynamical theory of unstable periodic orbits. We introduce the concept of most and least predictable states. The data basis of our analysis consists of a multicentury-long data set obtained from an intermediate coupled atmosphere-ocean model of the tropical Pacific. This cyclostationary Markov chain approach captures the spring barrier in ENSO predictability and gives insight also into the dependence of ENSO predictability on the climatic state

    Ground-based detection of a vibration-rotation line of HD in Orion

    Get PDF
    The v =1-0 R(5) line of HD at 2.46um has been detected at the position of brightest line emission of shocked H2 in the Orion Molecular Cloud. The flux in this HD line, when compared to that of the previously detected HD 0--0 R(5) line at 19.43um, suggests that, like the v=1 levels of H2, the v=1 levels of HD are populated in LTE, despite their much higher rates of spontaneous emission compared to H2. The higher than expected population of vibrationally excited HD may be due to chemical coupling of HD to H2 via the reactive collisions HD + H H2 + D in the shocked gas. The deuterium abundance implied by the strengths of these lines relative to those of H2 is (5.1 pm 1.9 x 10^-6.Comment: 9 pages, 2 figures, Proceedings of the Conference on "Deuterium in the Universe," to be published in Planetary and Space Science

    Biophysical feedbacks in the tropical Pacific

    Get PDF
    This study explores the influence of phytoplankton on the tropical Pacific heat budget. A hybrid coupled model for the tropical Pacific that is based on a primitive equation reduced-gravity multilayer ocean model, a dynamic ocean mixed layer, an atmospheric mixed layer, and a statistical atmosphere is used. The statistical atmosphere relates deviations of the sea surface temperature from its mean to wind stress anomalies and allows for the rectification of the annual cycle and the El Niño–Southern Oscillation (ENSO) phenomenon through the positive Bjerknes feedback. Furthermore, a nine-component ecosystem model is coupled to the physical variables of the ocean. The simulated chlorophyll concentrations can feed back onto the ocean heat budget by their optical properties, which modify solar light absorption in the surface layers. It is shown that both the surface layer concentration as well as the vertical profile of chlorophyll have a significant effect on the simulated mean state, the tropical annual cycle, and ENSO. This study supports a previously suggested hypothesis (Timmermann and Jin) that predicts an influence of phytoplankton concentration of the tropical Pacific climate mean state and its variability. The bioclimate feedback diagnosed here works as follows: Maxima in the subsurface chlorophyll concentrations lead to an enhanced subsurface warming due to the absorption of photosynthetically available shortwave radiation. This warming triggers a deepening of the mixed layer in the eastern equatorial Pacific and eventually a reduction of the surface ocean currents (Murtugudde et al.). The weakened south-equatorial current generates an eastern Pacific surface warming, which is strongly enhanced by the Bjerknes feedback. Because of the deepening of the mixed layer, the strength of the simulated annual cycle is also diminished. This in turn leads to an increase in ENSO variability

    Pulsed Doppler-free two-photon spectroscopy of polyatomic molecules

    Get PDF
    Doppler-free two-photon electronic spectra of a large polyatomic molecule are recorded for the first time with pulsed laser radiation of near Fourier-transform limited bandwidth (Δvnot, vert, similar100 MHz). The resolution obtained is sufficient to resolve individual rotational lines. Due to the high density of these rotational transitions a strong Doppler-broadened background is observed, which is, however, subtantially reduced by suitable choice of photon polarizations. Different vibronic bands of benzene (C6H6) are investigated and very accurate rotational constants are found

    Can woodland caribou and the forest industry coexist: The Ontario scene

    Get PDF
    Ontario is in the process of developing a strategy to improve the likelihood of woodland caribou (Rangifer tarandus caribou) and the forest industry coexisting in the province. This strategy is described within a set of proposed Timber Management Guidelines for the Provision of Woodland Caribou Habitat. The proposed guidelines advocate managing for large blocks of suitable winter habitat across caribou range, large cutovers to regenerate caribou winter habitat and the protection of traditional calving areas and travel routes. Summer habitat will be provided by the resulting mosaic. The forest industry can provide a sustainable supply of woodland caribou habitat that was traditionally maintained by wildfire
    corecore