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Abstract. We develop the theory of cyclic Markov chains Oscillation (ENSO) phenomenon which, sometimes, can be
and apply it to the EI Nio-Southern Oscillation (ENSO) pre- predicted with an anticipation longer than six months.
dictability problem. At the core of Markov chain modelling  Despite recent success in predicting ENSO using statisti-
is a partition of the state space such that the transition rategal and physical models (Latif et al., 1994) it turned out that,
between different state space cells can be computed and usg@rtly due to model-reality mismatches and partly due to ini-
most efficiently. We apply a partition technique, which di- tial state errors, the models perform very well in some years
vides the state space into multidimensional cells containingvhereas they fail in others. Similar to the predictability of
an equal number of data points. This partition leads to mathetow-dimensional nonlinear dynamical systems (Smith et al.,
matical properties of the transition matrices which can be ex-1999), ENSO predictability is state dependent. To account
ploited further such as to establish connections with the dy-or the state dependence of predictability in ENSO models,
namical theory of unstable periodic orbits. We introduce thesingular vector techniques have been employed (Chen et al.,
concept of most and least predictable states. The data basis @095; Eckert, 1997; Moore and Kleeman, 1997a,b). The
our analysis consists of a multicentury-long data set obtainedingular vectors represent those states of the system which
from an intermediate coupled atmosphere-ocean model ofre associated with the strongest error-growth characteristics.
the tropical Pacific. This cyclostationary Markov chain ap- However, by construction, they only capture the linear error
proach captures the spring barrier in ENSO predictability andgrowth along piecewise linearized trajectories. Furthermore,
gives insight also into the dependence of ENSO predictabilthe computation of singular vectors in ENSO models requires
ity on the climatic state. a linearized version of the model code as well as of its ad-
joint. For fully coupled general circulation models (CGCMSs)
such an approach is not feasible due partly to limited com-
puter resources and partly to the fundamental problem of for-
mulating adjoint operators of coupled systems with different

One of the main challenges being addressed by climate ret_ime scales. In our paper we d.esc'ribe an alternative approgch,
search is that of climate prediction on time scales rangingbased on the statistical investigation of model generated time

from several months to years and up to decades. In this corseries rather than on manipulating computer code (Eckert,
text, modern statistical techniques (e.g. Barnston and Ro1997; Chen etal., 1995; Moore and Kleeman, 1997a, b). The

pelewski, 1992; Penland and Magorian, 1993; Xue et al. statistical technique employed here is based on the estimation

1994; van den Dool and Barnston, 1995 Tangang et aLofadynamicaI equation for probability densities. In contra-

1997) as well as climate models of different complexity POSition to the singular vector approach, see, e.g. Palmer et
(e.g. Cane et al., 1986: Zebiak and Cane, 1987: Blumengl' (1998), this te_chmqge is fully nonlme_ar and is also appli-
thal, 1991: Goswami and Shukla, 1991a, b: Balmaseda et a|_<?able to CGCM simulations. The essential part of the dynam-
1994: Oberhuber et al., 1998: Stockdale et al., 1998: Ji e{cal eqguation is a transition matrix which describes the proba-
al., 1998: Mason et al., 1999; Gener et al., 1998) are being bility of observing, in one time step, trans.itions between dif-
used in order to predict climate fluctuations sufficiently in ad- [erent states. This so-called Markov chain approach was al-

vance for societies to take precautionary measures. Probabffady applied to the ENSO prediction problem by Fraedrich
the most prominent example of this is the ERNiSouthern 1988).. Fraedrich’s results are based on rather short ENSO

1 Introduction

Correspondence toA. Timmermann IThis technique has been successfully applied also in other me-
(atimmermann@fm.uni-kiel.de) teorological (Spekat et al., 1983; de Swart and Grasman, 1987;
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time series; his analysis is univariate and it does not take intvariabler, the dynamical variables at tintet+ 1 are related
account the cyclostationarity of the ENSO system, sagéil  to their values at the previous time stepy

etal. (1999). The present work improves on these aspects by

applying the theory of cyclic Markov chains to bivariate data X“(t +1) = f*(x(1),§(1), 1),

series characterizing ENSO. We point out the analogies be-

tween cyclic Markov chains and the Floquet theory of rdi- [ S8 SEEE 08 B PO B O BEE TR T
nary differential equations with periodic coefficients. In this P P

way, e.g. one is able to detect the so-called spring-barrier ir1]‘actors:. For the sake of illustration and of simplicity, let us

ENSO's predictability. assume that

Moreover, we partition the system’s state space in such ot + 1) = f(x, 1) + E%(r) (1)
way that each multidimensional cell contains the same num-
ber of observations, i.e. the system spends an equal amoumthere the random term&®(r) are Gaussian, uncorrelated
of time in each cell. This turns out to be not only an efficient and their variances are
way of using the data and the state space, it also leads to a
direct and transparent expression of the dynamics in terms d* (V&” () = AZ(1)8*Ps(t — ). 2
permutations matrices acting on the discretized state space

2 _ . .. . _
i.e. in terms of cycles. As the discretization becomes ﬁner,-rhe casen; (1) = 0 describes a deterministic system. Au

one expects this cycles expansion to converge into the untonomous systems correspond f8(x (1), 1) = f*(x(1)

201 — A2
stable periodic orbits (UPOs) expansion of chaotic attrac-2NdA5 (1) = Ag forall e o _
Even in the purely deterministic case, it makes sense to

tors, see, e.g. P. Cvitanovic (1991) and the references therein. ="' J ) _ )
Hence, here one could use the term coarse-grained unstabfonsider the probability of observing, at timethe dynami-
periodic orbits in order to stress the fact that our discretiza-C2! variables having values between sagnd(x +dx). We

tion of the state space is not arbitrarily fine. A nice exampledenote this pl"E)babIhty density by(x, 1) with p(x.7) = 0

of UPOs in the ENSO context can be found in Tziperman etand/ p(x, 1) d"x = 1. The time evolution of this probability

al. (1997). In practice, one can construct reliable transitiond€nSity iS expressed then in terms of the so-called Frobenius-
matrices for just a small number, for example three, dynami-P€rron (FP) integral operator

cal variables. Therefore, it is of utmost importance to choose

the right (three) variables, otherwise the results may be pracp(y. +1) = /dvx L(ylx,1)p(x,1).

tically irrelevant.

The paper is organized as follows: Sect. 2 gives a briefOne always has thatL(y|x,1) > 0 and
introduction to the theory of cyclic Markov chains with a fd"y L(y,x,t) =1 In the case of additive Gaussian
special emphasis on the connections with dynamical systemsoise characterized by Eq. (1) and Eq. (2), the explicit form
and unstable periodic orbits. Also, the connection betweerof the Frobenius-Perron operator is
the concept of predictability and a suitably defined entropy v
production, or information loss rate, is brought to the fore. £(y | x, t) := (@) At
In Sect. 3 we study the state dependence of ENSO as sim-
ulated by an intermediate ENSO model (Zebiak and Cane, xp<_ V(% — fox, t))z) -
1987). We apply univariate and bivariate Markov chains in 2A2(1) ’
order to determine both the least and the most predictable
states in this model. AlSO, the predlctablllty Spring barrier is with A@) = nle Ay (D). For autonomous systems, ie.
recovered. We conclude in Sect. 4 with a summary and dis¢(y | x, ) = £(y | x), one has a stationary probability den-

cussion of the technique we applied, of the limitations thatsity2, call it p,(x), which is invariant under the time evolu-
may show up in practice and of our main results. tion, i.e.

a=1

_ |4
2 Theoretical foundation of cyclic Markov chains Po(y) = /d X LY 1%) po(x).

Before venturing into ENSO predictability in coupled mod- If the system is non-autonomous but its dynamics is periodic
els, we briefly describe the theory of Markov chains and dis-intime, i.e.L(y | x,1+T) = L(y | x, ), whereT isthe cor-
cuss how to estimate master equations from data also in theesponding period, then the analogue of the stationary distri-
case of cyclostationary systems. bution will be time-dependent: besides the oscillations with
Consider a dynamical system with degrees of freedom periodT it may also contain (sub)harmonics. The system we
denoted byx?,1 < « < V. The Markov chain descrip- shall consider, ENSO, is non-autonomous since its dynamics
tion of the system is obtained by discretizing time as well asis modulated by the yearly seasonal cycle .
the system'’s configuration space. After discretizing the time

2For the sake of simplicity, we assume there is only one such
Vautard et al., 1990; Nicolis et al., 1997; Egger, 2001) and oceano+invariant measure. In general, more than one invariant measure can
graphic (Cencini et al., 1999) contexts. exist if bounded noise is assumed.
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Next, one partitions the state space into a finite nuntber than or equal to 1 and 3) if is irreduciblé, then the pos-
of cells. We will identify each cell by a Latin subscript. The itive right eigenvector is unique. The Perron vector, is then

occupation probability of each cell is, the (unique) stationary distributiop,, = v. The stochastic
matrices we shall encounter are irreducible and, moreover,
pit) = /dvx p(x,t) >0, 4) all their other eigenvalues have absolute values smaller than
' 1; such matrices are called primitive. Irreducibility means
and satisfies that there is only one attractor in state space.
c As just stated, irreducible stochastic matrices have only
Z ) =1 one positive e_|genvector. Th_|s means that all other eigenvec-
~ tors have positive and negative components, moreover, some

) ~ components may be complex. On the other hand, the state
Our partial knowledge about the state of the system attime yectorsp(r) describe probability distributions, i.e. their com-
is contained inp(¢), we call p(¢) either the probability dis- ponents are nonnegative at all impg(r) > 0, for all j and

tribution or the state vector. N o for all t > 0, as it is ensured by the property (5) satisfied
Finally, one defines the cell-to-cell transition raies(j. /)  py the transition matrices),. These two observations make
by evident that the non-Perron eigenvectors are not probability

.. 1 v v distributions but deviations away from the stationary distri-
me(J. ) =4 ffd y Jid'x £y lx, 0, bution, i.e. deviations with respe)ét to the Perron vect)(/)r. Sim-
with @; = |, dVx. ilarly, complex eigenvectors will always be accompanied by

! their complex conjugates; the presence of pairs of complex
conjugate eigenvalues tells us that the corresponding eigen-
times that one observes the system in jhth cell at time yectors do not Qecay monotonically but that they oscillz_alte in
¢ + 1 when the system was in thieh cell at timer. The par-  ime with a period that equalri) / [Incarga) ], when it
tition of initial and final states need not be identical. In the IS Measured in units of the time step. In the general case,
following, we deal always with initial and final partitions that Stochastic matrices are neither symmetric nor normal; on the
are not (necessarily) identical but have the same number gphysical relevance of nonnormal matrices see, e.g. Lorenz

cellsC. The transition rates:, (j, i) can be seen then as ele- (1965) and Trefethen et al. (1993).

ments of a nonnegativé x C matrix that we shall denote by In ordgr to avqid unnecessary complications, in the next
m,. The conservation of the total probability takes now the Subsectlons.we'llmlt the discussion to autonomou; system.s.
The generalization to non-autonomous systems is done in

The dimensionless numbers, (j, i) are the fraction of

form,
Sect. 2.4.
¢ o ) The concept of Markov chains is illustrated and summa-
th(” =1 forallj. (®)  rized in Fig. 1. This figure also shows the main analogies
i=1 with the expansion of deterministic dynamical systems in
This means also thatthe vectdr 1, ..., 1, 1) isalefteigen-  terms of eigenvectors of the Frobenius Perron operator.

vector of the matrices, with eigenvalue 1INonnegative ma- ) N
trices satisfying (5) are called stochastic matrices; they form2-1 Data (equi)partition

a semigroup, i.e. the product of two stochastic matrices is a . ) -
stochastic matrix; the inverse of a stochastic matrix, if it ex- SUPPOSe that we are given a long data series consistifg of

ists, is not necessarily a stochastic matrix. The occupatiofiiéasurements witl» > 1. We assume that transient phe-
probability of each cell will evolve according to nomena (statalstlca_llly transient), if present, play a negligible
role in the data series. These measurements allow us to de-

; c o fine the system state space and subsequently to partition this
P+ =Y m, )Hpl©, space into a number of cells. The construction of these cells
j=1 can be done in an infinite number of different ways. The

whenever the probability density(x, 1) and/or the kernel ~COmputation of some important dynamical quantities is sen-
L(y|x, 1) is sufficiently constant over the-cells. More- sitive to the way in Whlch_thg c_ells are const_rl_Jcted. Conse-
over, by taking finer partitions with largef one expects to qugntly, oneis |_n_terested in fmdmg thosg partitions that make
approximate the real dynamics with higher precision. reliable and efficient computations possible.

Nonnegative matrices and, more specifically, stochastic 1N€ partitions we have been using are constructed as fol-
matrices have been extensively studied, see, e.g. Berman af@s: Consider first the case when one measures only one
Plemmons (1979). We recall some of the important proper-dynamical variable. Then th® measurements are spread
ties that they share. The Perron-Frobenius theorem tells ugétween a minimum and a maximum value; these extreme
that for any stochastic matrix, 1) there is at least one posi-
tive eigenvector with eigenvalue le.m - v = v andv’ > 0 )
forall1 < i < C, such an eigenvector is called a Perron Permutatio
vector, 2) all other eigenvalues have absolute values smalletindS, are square matrices

SA nonnegative matrixn is irreducible if and only if there is no

P such thaPmPT is of the form(i1 5?2) whereS;
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description satisfies the Markovian property. The Markovian
univariate case: equinumber partition (e.g. D=12,C=3) property is assumed in our approach and has to be verified a
year: 74 5 8 1.6 9 2103 1211 posteriori. Like every sorting procedure, the manipulations
month 1 1 required for this task are very time consuming and special
=14 algorithms have been developed in order to do this in an ef-
month 1.2 o ooe e o o o o oo ficient way, see, e.g. Chap. 14 ©he nature of mathemati-
2 T 6 ... X cal modellingby Gershenfeld, Cambridge University Press,
(1999) and the references therein.
3 te 2 738 9 41271 10 x 2.2 Double stochastic matrices and unstable periodic
month p12 ‘ ‘ H
orbits
year: N3 1211 Since we constructed our partition in such a way that each
month k1 cell contains the same number of occurrences, it follows that
the probability distribution corresponding to the complete
monthly wransition matrix: m* data set is represented by the state vector
yearly transition matrix : M'J:H;,;:lemp
1/C
bivariate case: equinumber partition (e.g. D=32, C=4x4) .
Pdata = : . (6)
month 1 Xq month p 2 X4
o e o0 1/C
5 ° o _910|0g o
? o |® 9 1/: ° Then one must have
10\ ° o | o5 LJ
[ ]
o, 6 : \Ty X ) ° o M - Pdata = Pdata>
X2 ) o T' ) ] ) ] ] ) )
. '] L D i S E— i.e. paara @s given by Eq. (6) is the stationary distribution or
* e e 7 % e | . Perron vectop,, with eigenvalue 1This means that, besides
o 1® . o i=t-16 7 o e . the probability conservation constraint (5), the transition ma-
o4 .8. [ K J 41000 oo . .
trices satisfy also

C
Z m(i, k) = 1. (7
k=1

Fig. 1. Data partition for the univariate and bivariate cases.

Non-negative matrices satisfying both constraints (5) and (7)
values define the variable’s range. Partition this range intcare calleddoubly stochastic matricesAlso, these matrices
C intervals such that each interval contains an equal numbeform a semigroup.
of data points. The number of data points in each interval is A theorem by Birkhoff (1946) states a remarkable property
d = D/C. Ideally, we would like to have enough points in 0f these matrices: every doubly stochaglic C matrix can
each cell so that, potentially, every cell can be accessed frore written as a convex combination of permutation matrices,
every cell, i.e. one would like to have> C, i.e. D > CZ2. i.e.

Consider next the two dimensional case, i.e. when one .
measures two simultaneous dynamical variables. Firstly, par(—joubly StOChi/St'M > M=cPrt--+ovPy 8)
ggcr)rr;;heD _data points intoy/C ceIIs_anng t_he coordinate Yvith > 0, ZC:’ —1andN <C?2_2C+2

ponding to one of the dynamical variables, each cel ,
containingD/~/C point$'. Then partition each of these cells =t
into v/C cells along the second coordinate corresponding toRecall that a permutation matrix is a doubly stochastic matrix
the other measured dynamical variable. In this way one genwhose elements are either 0 or 1. It is easy to see that such
eratesC cells, each one containingg = D/C data points. a matrix only exchanges the contents between cells and that
The procedure is illustrated in Fig. 1. by rising it to an appropriate power one gets the identity ma-

This partitioning can be applied to higher-dimensional trix. In other words, a permutation matrix describes a (com-
measurements. In this way we can always partition the stat®ination) of cyclic, periodic evolution. When the number of
space into ‘cells of equal weight, i.e. the time series spendseells C goes to infinity, one expects this Birkhoff expansion
the same amount of time in each of the cells. It is intuitively to converge into the cycles expansion that has been devel-
clear that this is a very efficient way of defining a partition. oped for studying dynamical systems, see, e.g. Cviténovi
This partition does not automatically ensure that the system'§1991) and the references therein. It describes the dynamics
in terms of coarse-grained unstable periodic orbits. They are

4For the sake of simplicity, we are assuming th4€ and unstable to the extent that < 1 for all i; in fact, one can
D/+/C are integers. associate a lifetime/1In ¢;| to the permutationr;. Just like
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the cycles expansion, the Birkhoff expansion is not unique. Suppose that at = 0 we know with high precision the
For example, the Markov chain described by the following state of our system, i.e. at= 0 the probability distribution

doubly stochastic transition matrix, is totally localized in one cell, say it is in cell
0 0 1212 p'(0) =6
1/21/2 0 0 so that the information attains its maximum possible value
/212 0 0 I(0) = InC. One time-step later, the state will é(1) =
0 0 %212 m(i, k) and the corresponding information content will be
can be decomposed in terms of permutations in more than c
one way. One possible decomposition is (D) = Z m(i, k) Inm(, k) +InC.
i=1
0001 0010 Therefore, the information lost in the first time step of the
1f1000 +} 0100 evolution is
210100 2l1000]"
0010 0001

C
Al = [(0) — [k(D) = = Y “m(i. k) Inm(. k) > 0.

Another possible decomposition is: i=1

By construction, all cells have equal weight (or probability),

0001 0010 therefore the probability of starting from céilis just 1/C.
110100 111000 Averaging over all possible initial conditions, i.e. over all ini-
211000 + 2l0100}|" tial cells, we get the average loss of information in one time-

0010 0001 step

Generally, one is interested in the expansion (8) with the
smallest possible number of terivsand, consequently, with
the largest amplitudes (or longest lifetimes).

In closing this Subsection, it is worthwhile recalling that, Since permutation matrices are characterizednloy k) =
for a large class of irreducible stochastic matricesit is 8’ for some invertiblef (k) we see that permutation ma-
possible to find positive diagonal matricBs andD, such  trices achieve the lower bound in information loss. In fact,
thatD; - m - Dy is a doubly stochastic matrix, see Brualdi et permutation matrices are the only doubly stochastic matrices

(AD) = -

Al ~

cC C
D> mi. k) Inmi. k) > 0. (9)
k=1i=1

al. (1966) and Sinkhorn and Knopp (1967). with (AI) = 0. This agrees with our expectations since a
permutation corresponds to a totally reversible dynamics.
2.3 Information loss Notice that the information loss is strongly dependent

upon the chosen partition. For example, one can construct
The transition matricesy may be singular, i.e. one or more the cells in such a contrived way that all the transition rates
eigenvalues may be zero. Evidently, in such a case, some cgqua| YC,i.e.m(i, k)= 1/C forall (i, j) and the informa-
the information contained ip(?) is irretrievably lost when  tion |oss achieves its largest possible valu€ Ii©On the other

passing tor + 1. More generally, the decay of all modes  hand, the minimum information lostaken over all possible
but for the Perron vector, means that information about thepartitions is an intrinsic property of the system.

departure of the state vectprz) from the stationary state
Po is lost. How can we quantify this information loss? A
convenient and often used measure of the ‘distance’ betweer2.4 Cyclic Markov chains and Floquet theory
say, a statg(¢) and p, is®
c " The efferc]ts of the yearlyhcyclebare clearly preslent ri]n the
_ i p ENSO phenomenon. In this Subsection we explain how to
1oy =+ Z Prnin=s= =0 include this fact in a Markov-chain description.

=1 o
hi o Iso bounded f b h The data on which the analysis is based are monthly av-
This quantity is also bounded from above(lre- 1(z), the erages of some relevant variables. The partition described in

maX|mfum vglude_ﬁofl (t) 'fS achieved V\r/]heg only Ofni com;()jo— the previous Subsections is applied to each month, i.e. we
nent of p(7) is different from zero. The decay of the modes (040 12 equipartitions, each with a numbeuf cells, each

|mp!|es that, on the average, the information coinVe(ml di- cell containingD/12C number of measurements. This is
minishes until it reaches zero, i.e. whepi (1) = pj. illustrated in Fig. 1. The precise position in state space of
5We use ‘mode’ and ‘eigenvector’ indistinguishably. the cells differs from month to month. Next, we compute
6There are other possible definitions; this one is the only exten-12 transition-rate matrices, e.g(i, j) denotes the transi-
sive one, i.e. extensive over uncorrelated degrees of freedom.  tion rate from thej-th January cell to the-th February cell
"The decay of (¢) is not necessarily monotonic: transiently it and so successively up to the December to January transition-
may happen thak(z) increases. rates matrixni,. Therefore M the transition matrix after a
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yearly cycle starting from month 1 and ending in the sameln the Floquet theory one introduces the monodromy matrix

month one year later, is given by in order to show that it is time-independent; we have already
proved that, i.e. that thé as defined above is, indeed, inde-
My :=maz-myp- - mz - My pendent of.

Notice that it is not necessary to compute the twelve in-
termediary month-to-month transition matrices, in or-
der to computeM 4, it can be computed directly from the
yearly transition rates, i.&1(i, j) is the fraction of month-

1 data points that were in thgth cell and reached the

th cell of the same month one year later. In this way, it is

2.5 Reversible and irreversible dynamics

Let us split a doubly stochastic transition mathkik into its
symmetric and antisymmetric parts,

possible to construct twelve year-to-year transition matricesy;;, = Six + Aix (10)
M., n=1,...,12 Since them, are doubly stochastic and 1 1
irreducible, so are the yearly transition rate matriggs. Sik = > (Mix + Mii)  Aix = 2 (Mi — M) - (11)

In general, the twelve yearly transition matridds, will
be different, however, it is easy to show that they have
the same eigenvaludg, |0 <n < (C — 1)} and that their ¢ _ Sip = S < 1, (12)
eigenvectors are simply related. This can be seen as followsi S 1 =
1 - ]
1

Due to the doubly stochastic charactehf one has

multiply the eigenvalue equation

M1 pn = pPupn ZS,'](Z:L.
k

on the left by the transition matrix, and obtain
In words: the symmetric part of a doubly stochastic matrix

M2-M1- pp = pyM1- Pu is also doubly stochastic. The dynamics generated purely
with My=mg -mqo----- mo. by such a doubly stochastic, symmet8avould consist of
decaying, non-oscillating modes, we say that suctsas

In other wordsmy- p,, is an eigenvector dil > corresponding ey dissipative or diffusive. In mechanics, such a dynam-

to the same eigenvalyg . Similarly, mz - my - p, istheMs- jcq is called irreversible. The matrix elements of the anti-
eigenvector corresponding tg. symmetric parf satisfy

Being doubly stochastic, all the yearly transition matrices
M, have the same Perron vecfdr 1,..., 1] with eigen- 1 _ =~ 1 (13)
value pg = 1. However, recall that the partitions associated 2 — ik =7
with each month are different; consequently, the Perron vecz Ajx = 0, (14)
tor in, e.g. January describes a different probability distri- 5
bution than the, e.g. February Perron vector. In fact, thes A =0, (15)
twelve Perron vectors describe the stationary pdf’s of each;
month. |Aik] < Sik. (16)

The analogy with the classical Floquet theory of ordinary
differential equations (1883), see, e.g. Cronin (1980), be-The dynamics generated purely by the anti-symmetric part
comes evident by introducing a set of matridggs the ana- A consists of non-decaying, oscillating modes, Aealone

logue of Floquet's fundamental matrix solution, as would generate a non-dissipative (or conservative) time evo-
v o M lution. In mechanics, such a dynamics is called reversible.
Yu:=1[po,Prs--sPegl p=1...,12 In the next paragraphs we will discover more reasons for as-

sociatingA with the conservative part of the dynamics &hd
with the diffusive part.
The complete dynamics, i.e. the one generated by
M, -pt=psptwithn=01..,C-1, M = S+ A, cannot be obtained by a simple juxtaposition or
. . factorization of the dynamics generated by these two com-
and the e.g. eigenvalues are, e.g. ordered according to theﬂonents separately because, in gene8al, # AS, conse-

absolute valuesio,| > |pn+a| With po = 1. Ouriindexu  quently, the eigenvectors of these matrices will differ.
corresponds in the Floguet approach to the time modulo the' | ¢t s express the average information loss in terms of the
period, in our case, modulo twelve months. Then one ha%ymmetric and anti-symmetric components

that

where the columng,! are the eigenvectors of the transition
matrix from monthu to the same month one year later, i.e.

1. ¢

Yyur12="Yyu @ (al)=-- DO ISik + Al In[Sik + Air]
o k=1i=1

where @, the analogue of Floquet's monodromy matrix, is c lc

the diagonal matriXoo, p1, ..., pc—1] and the time-index _ _1 Z Z Six I Six [1+ ﬂ}

is shifted by twelve months, i.e. by one complete cycle. coz™ Six
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3 Predictability of an intermediate ENSO model

Mo

AirIN[Sik + Aix]

~
[|
e

In this section we apply the Markov chain concepts sketched
above to data generated by the Zebiak and Cane (ZC) ENSO
model (Zebiak and Cane, 1987). The ZC model is a cou-
pled atmosphere-ocean model for the tropical region. The
SieIn [l + ﬂ} a}tmospheric component consist's ofa GiII—type, sjteady—state,
ik linear shallow water model (Gill, 1980) which is formu-
lated on an equatorial beta plane. Dissipation is parame-
A In[Sik + Aie] . (17) terized in terms of linear Newtonian cooling and Rayleigh
friction. Furthermore, a surface-wind parameterization of
. low-level moisture convergence is used. This model simu-
Therefore, we can writgAl) = (Al)s + (Al),,s where  |ytes reasonably well the steady state atmospheric response
(Al)s is the information loss that would be generated by they typical sea surface temperature anomalies (SSTA) in the
doubly stochastic matriX exclusively, namely tropics. The ocean model is formulated for a rectangular
L C tropical ocean basin. It is based on a linear, reduced grav-
(A)g = —= Z Z SiInSiy > 0, ity model, including a 50 m_degp frlctlopal Iayer, which ac-
CoDm counts for surface intensification of wind-driven currents.
The thermodynamic core of this ocean model takes into ac-
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while (A7) 4,5 depends both o8 andA, count three-dimensional temperature advection by mean and
anomalous ocean currents, a linear dependence between sur-
N _1 i Z Soinl14 Aik face heat flux anomalies and SSTA and the asymmetric effect
AlS Co= ik S; of vertical advection on temperature. Subsurface temperature
L E ; anomalllies aLe ﬁiagnoser? from the ;/Srialt(ions o;';heldmo?el’s
1 . . . upper layer thickness. The seasonal background fields of sur-
C ;; AucIN[Sik + A (18) face winds and wind divergence, as well as of sea surface
temperature are prescribed.
and it vanishes foA = 0. Taking into account the antisym- ~ The Zebiak and Cane model generates chaotic ENSO os-
metry of A, one has cillations in the standard parameter set. As to whether
c e 5 the observatipns are more adequately. described in terms
(AT} 45 = _1 Z Z S.inl1— Aik of a stochastically excited damped oscillator (Penland and
A/S C == ik ik Sardeshmukh, 1995) or of a chaotic oscillation is an interest-
E lz ing issue that has not been solved yet. We do not intend to
_1 Z Z AizIn Sik + Aik_ (19) dwell into the details of this interesting controversy. Small
Cioa= Sik — Aik changes in the standard parameters of the ZC model can lead

to stable ENSO oscillations, for which noise becomes cru-
Since|Aik| < Sik, one sees that each term under the firstcial., This sensitivity should be kept in mind when interpret-
summation sign is negative or zero and that each term undehg the results of the ZC model. Very often, however, the
the second summation sign is positive or zero. Moreover, ongossibility is ignored that ENSO can be self-sustained dur-
can check that In[(s +a) / (s —a)] > —sIn[1—(a/s)?)]  ing some decades, whereas it might be stable during other
forall0 <s <1andla| <s. Therefore(Al),,s <0,i.e.a  decades. In fact there is observational evidence (An and
non-vanishing anti-symmetric componénimplies thatthe  Jin, 2000) that interdecadal background changes in the trop-
entropy production of the doubly stochastic mati®+ A) ical Pacific can trigger changes in the growth rate of ENSO,
is smaller than that of the doubly stochastic magixThe strong enough to cross the Hopf bifurcation point.
most extreme example of this reduction is provided by the e performed a 640 year long simulation with the Ze-
permutations matrices: sin¢a /)P a%N= 0 one hasthat  pjak and Cane ENSO model using the standard parameter
(Al)zejrsm”tat'onz — (apRemuBion o configuration; we chose to limit the length of the data set

For all these reasons it is natural to associate the antito 640 years because it would be very difficult to generate

symmetric parA with the conservative part of the dynamics. longer time series from more complex GCMs . Our analysis
On the other hand, the symmetric p8rstems not only from  makes use of the simulated sea surface temperature anoma-
the diffusive part but also from the conservative part of thelies as well as of the thermoclince depth anomalies. In par-
dynamics, as can be clearly seen in the case of a permutatidicular, we compute the popular i 3 SSTA index (Zebiak
matrix: a permutation matrix is a purely conservative dynam-and Cane, 1987) which characterizes ENSO effectively. This
ics and yet it has a nonvanishing symmetric gafneisled index is defined as the SSTA averaged over the regi@+5
to define the purely diffusive componentsMfassS;; — | Az| 5°N, 150 W=9C W. For our bivariate analysis we also use
and to measure the overall purely diffusive charactév dfy the thermocline depth anomalies averaged over the region
(1-C13 1Aul). 10° S-10 N, 120° W—180 W.
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entropy production Nino3 SSTA ZC model forecasts 1,2,3,...,6 months, initialized in January
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Fig. 2. Seasonal dependence of the entropy production: Entropy a&ig. 3. Initial-state dependence of dispersion in probability space;
a function of lead time and of the initialization month. the initialization month is January.

) 3.1 Univariate analysis
It is well-known (Balmaseda et al., 1995, Kumar and

Hoerling, 1998) that ENSO forecast skills depend on the| et us first consider an univariate analysis using only the El
initial state and in particular, on the season of the yearNifio 3 SSTA index. The computed information loss based
The so-called predictability barrier characterizes the fact thabn the 640-year long time series for different initialization
ENSO predictions initialized in the boreal fall have a sig- months and different lead prediction times is shown in Fig. 2.
nificantly better skill than those initialized in the boreal The partition used here & = 640, C = 16, d = 40 which
sprind’. This effect might be due to the seasonal changesensures the accessibility conditiafis € andD > 2.

of ENSO instability relatgd to changmg ocean stratification  one observes that the entropy production quantifying the
and atmosphere-ocean interactions. As to whether the Z&mte of spread of the probability density is modulated by
biak Cane model is a “realistic” model with respect to sim- the annual cycle. More precisely: there is a larger entropy
ulating the seasonality of the atmosphere-ocean interactiongroduction from March and April and a lower entropy pro-

shall not be discussed hére duction for late summer to autumn initialization months;
We studied this phenomenon by looking at the informationthis is the so-called ENSO predictability barrier. One ob-
loss as a function of lead time and initialization moth serves furthermore, that for forecasts initialized in, e.g. Au-

gust (month 8) the entropy production levels off at a lead time
of about six to seven months whereas it increases again for

8Recently Torrence and Webster (2000) introduced the term per-Ionger lead times. These results are not new but they do illus-

sistence barrier in order account for the fact that the drop of the au_trate_the l_ml'ty of cyclic Markov chains in order to quantify

tocorrelation observed during spring (Balmaseda et al., 1995) is noPredictability.

necessarily associated with a complete lack of predictability. Dy- Notice that in this approach information about the pre-

namical ENSO prediction models, however, show that ENSO fore-dictability of the system is extracted from one, long, time se-

cast skills are strongly affected by this barrier. In the following, we ries and not from a number of simulations initialized on dif-

will thus, use the old term predictability barrier. ferent points of the attractor, as is done in ensemble-forecast
9As for the role of the ZC-model, the ZC-model was chosen not studies.

because we consider it to be a perfect model for ENSO but just as | addition to the seasonal cycle effect, the predictability

an illustrative example. The cyclic Markov chain concept can be 5t ENSO might depend also on the state of the tropical Pa-

applied to any kind of ENSO model that yields either stochasticallyciﬁC itself. This implies that an EI Nio forecast starting, e.g.

exiz(ljted linear 9§C|Ilat|on§ or self-sustained chaotic oscﬂlauong. from an El Nfio state might have a different quality than a
The transition matrices for a-month lead forecast starting R . . .
forecast initialized during an intermediate state.

from monthy can be computed as(v+ux) = m(v+p—21)--m(w). . . .
However, such a matrix multiplication might increase the rounding Figure 3 shows three Markov chain probability forecasts,

errors and this should be avoided in order to ensure that Eq. (5) i€l of them starting in January but from different initial con-
satisfied. Hence, we compute the corresponding transition matrpditions. The initial probability density functions (pdf) were
elements, called them,;, directly by counting how many data chosen to beyg = &7, with j=1, 7 and 14, respectively. The
points in monthu located in cel end up in celb v months later. first one corresponds to strong Lafidi conditions, the last
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Fig. 4. Initial-state dependence of dispersion in probability space;Fig. 5. Entropy as a function of the January initial state for forecast-
the initialization month is April. ing lengths of 3, 6, 9 and 12 months.

one to strong El Nio conditions. The time evolution for In agreement with the previous findings, one observes sat-
these initial pdfs is shown for lead times from one to six uration of the entropy production at around a six-month lead
months. and that predictions started from neutral ENSO conditions

One observes that, starting from strong Lai&licondi-  are less predictable than those initialized during large ENSO
tions, upper panel of Fig. 3 the system remains in the Laevents. For a given lead time, we shall call Most Unpre-
Nifia state for about six months. The same holds for stronglictable Modes (MUMSs) those initial states that generate
El Nifio conditions, see lower panel of Fig. 3. In contrast to the largest information loss and Least Unpredictable Modes
these two large anomaly cases, neutral conditions are mucfLUMSs) those initial states that generate the smallest infor-
less predictable as can be seen from the fast spread of the pdfsation loss. In our analysis we obtain MUMs and LUMS for
in the middle panel of this Figure. Probably this is a manifes-each month of the year, separately.
tation of the fact that under neutral conditions an oscillation In closing this Subsection, let us analyze the eigenmodes
exhibits a velocity maximum in state space. This could im- of the year-to-year transition matrickk, = H}iomMJri. As
ply that neutral ENSO conditions in January are much moreshown in previous sections, all thé,, have a Perron eigen-
unstable than extreme ENSO conditions. vector py = (1/C,...,1/C), such thatM, - py = pg.

In Fig. 4 we show the results obtained from the same typeThese twelve Perron vectors are nothing else but the aver-
of analysis but done now for highly localized initial condi- age, stationary distributions corresponding to each month.
tions starting in April. We observe qualitatively the same Recalling that each month has its own partition of state
features as for the January initialization case. However, thespace, one realizes that, indeed, the twelve Perron vectors
dispersion rate of the pdfs is much stronger during the boreatlescribe different distributions in state space. It is only af-
spring than during the boreal winter. The main quantitativeter a complete twelve-month cycle that we recover the same
differences with respect to Fig. 3 can be seen for leads rangstate space distribution. The distributions corresponding to
ing from one to three months. all twelve Perron vectors have the maximum possible entropy

Had we chosen a partition of the state-space into equidisfor a partition withC cells, namely, their entropy is Ifi. Ac-
tant intervals of the index, then the transition rates from andcordingly, there is no information loss when one starts from
to the extreme-value cells would have been estimated wittthis distribution. Another way of stating this is that the Per-
large errors. Our partition into equal-weight cells has the ad+on eigenvector has an infinite lifetime. The time evolution of
vantage that the transition rates for the extreme values arthe Perron vectors starting from the initial month of January
estimated as precisely as those for the neutral conditions. Oi$ shown in Fig. 6.
the other hand, a drawback of this partition may be the re- We observe that in the first stages of the time evolution
duced physical resolution for extreme ENSO events. the eigenvector ol is rotated away from the El Rb state,

The state dependence of ENSO predictability is summawhereas the pdf does not change significantly for SSTA val-
rized in Fig. 5. It displays the information loss associatedues smaller than 2 K. The eigenvector turns back to its origi-
with the El Nino 3 SSTA index for different forecasting nal position after about 7 months.
lengths. The January initial states are chosem@& 8; The other eigenvectors have eigenvalues whose absolute
j=1,..., 16. value is smaller than 1, i.¢o,| < 1 forn > 0. This means
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Fig. 6. Time evolution of the leading eigenmode of the yearly tran- Fig. 7. Entropy as a function of lead time and initialization month

sition matrix M during the course of a year. as computed for the total (upper left panel), symmetric (lower left
panel) and non-dissipative dynamics (lower right panel). A state
space view of the SSTA-TDA- trajectory is displayed in the upper

that their lifetimes are finite, i.e. that they decay in time. right panel.

There is another essential difference with respect to the Per-

ron vectors, namely, the other eigenvectors are not positive.

This reflects the fact that these eigenvectors are not prob- is retrieved as well as the slowing down of entropy pro-

ability distributions but only departures of probability dis- duction after about six months.

tributions with respect to the steady distribution, i.e. from ]

the corresponding Perron vector. In meteorological parlance, — 1he entropy productiofA /) due only to the symmet-

they are anomalies. Since the matridéds are real, com- ric part of the transition rate matrix is shown in Fig. 7

plex eigenvalues and their corresponding complex eigenvec-  lower left panel. It can be seen that the total entropy

tors appear always in conjugate pairs; in such a case, the cor-  Production is mainly dominated by the symmetric part.

responding departures from the Perron vector do not decay

monotically but decay as damped oscillations. There is a

connection between these eigenvalues and the periods and

lifetimes of the coarse-grained unstable periodic orbits, see,

e.g. Cvitanow et al. (1991).

— The non-dissipative partA7),,s which is related to
the anti-symmetric part of the transition rate matrix ex-
plains only a small part of the information loss. How-
ever, a strongly pronounced seasonal modulation of in-
formation gain becomes apparent with strongest infor-

3.2 Bivariate analysis mation gain to be seen in the boreal summer season.

Next, we present a bivariate study, i.e. Markov chains which In Fig. 8 we show the one-month lead transition matrix

are derived from two ENSO-characterizing variables. In thestarting in June, its eigenvectors, eigenvalues, and its sym-
first example, we compute the information loss based on thénetric and anti-symmetric parts. The eigenvectors are shown
El Nifio 3 SSTA index as generated by the ZC model and thdn cell-number space. As one can see, also in this case the
west equatorial thermocline depth anomalies, averaged oveptal transition matrix is dominated by the symmetric part.

the 10 S-10 N, 120 W-18C W for different initialization ~ Hence, even for a one month forecast the dynamics is largely
months and different lead prediction times. We use Eq. (9)dissipative. The eigenvalue spectrum (Fig. 8f) shows several
and the cyclostationary transition matrices computed accordoscillating modes with frequencies comparable to their decay
ing to the scheme shown in the lower panel of Fig. 1. The parfates. How these oscillatory modes can be interpreted phys-
tition we use is characterized By = 640 C = 16,d = 40 ically is a question that requires further work. A first step

which ensures the accessibility conditiohs ¢ andD > would consist in studying whether they remain unchanged or
C2. The results are displayed in Fig. 7 where the entropynot when one increases the number of state spaceCehs

production has been split into three parts. it is evident, whenC = 16 the longest period that one can
detect is 16 months. Similarly, more research should lead to
— The entropy productiogA ) based on the full dynam- a better understanding of the information contained, e.g. in
ics is shown in Fig. 7 upper left panel. Qualitatively and the asymmetric part of the transition matrices.
quantitatively we observe very similar features as inthe In Fig. 9 we present the same results for a three month
univariate case displayed in Fig. 2. The spring barrierlead forecast. If this and the previous matrix would contain
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tion in state space of the corresponding anomaly. As one ca 40 160 180 200 220 240 260

see, the spectra of the two matrices are not so simply related.

This is not surprising since there may be more than sixteerrig. 10. Most unpredictable thermocline patternsgxis represent
modes that dominate the evolution at different phases of thene latitude ranging from 205 to 2@ N, x-axis represents longitude
yearly cycle. By increasing the number of c&l®ne may  ranging from 130 E to 85 W) for a 7 month forecast initialized in
detect more dynamically relevant modes, for example, thos@anuary, May and September, respectively.

UThis will require a larger set of data.



208 R. A. Pasmanter and A. Timmermann: Cyclic Markov chains

with periods longer than 16 3 months= 48 monthsMore- The MUM computed for a seven-month forecast initialized
over, as discussed in Sect. 2.2, the transition matrices cam January characterizes the discharging of the warm pool.
be expanded in terms of cyclic permutations that correspondVarm thermocline waters swash the equatorial eastern Pa-
to the coarse-grained unstable periodic orbits of dynamicactific. This situation is very similar to a situation shortly be-
systems’ theory, Cvitano¥iet al. (1991). Such a decom- fore a major El Nfio event is developed and downwelling
position in terms of UPOs may, in fact, be more revealing Kelvin waves propagate from east to west. The most un-
than a decomposition in terms of eigenvectors. Again, by enpredictable mode for a September forecast has a similar pat-
larging the number of cells, it should be possible to detecttern to the one initialized during May. MUMs for May and
more UPOs and to disentangle them better. In this respect, iBeptember are characterized by a deep warm pool thermo-
should be noticed that probably the best way to detect and taline and a shallow eastern equatorial Pacific. This pattern is
disentangle UPOs is to work with three or more dynamicaldominated mainly by the leading EOF. The MUM for May

variables, as it is done in Tziperman et al. (1997). corresponds to the situation approximately 7 months before
a major El Nfo event. The warm pool is anomalously deep
3.3 Most Unpredictable Modes (MUM's) and short perturbations can lead to the initiation of down-

_ o welling Kelvin waves which need about two to three months
It has become quite popular to study similar aspects of erroko cross the Pacific. It is worthwhile noticing that the MUMSs
growth in ENSO forecasts (Chen et al., 1995b, Xue et al..,computed for different initialization months have very sim-

1994, Moore and Kleeman, 1997; Eckert, 1997) due to ini-jlar structures to the singular vectors computed for the ZC
tial state errors within the linear framework of singular vec- model, see, e.g. Chen et al. (1995b).

tors (Lorenz, 1965). These vectors are associated with the

fastest linear growth of the initial perturbations due to the

non-normality of the tangent linear propagator (Trefethen ety symmary and discussion
al., 1993). They can be computed from the integral propaga-

tor of the linearized model. In the case of reduced complex-oyr main objective has been to illustrate the capacity and
ity, coupled, atmosphere-ocean models (Chen et al., 1995Rjjlity of the Markov chain approach in a geophysical con-
Xue et al., 1994; Moore and Kleeman, 1997; Eckert, 1997)text more specifically, in characterizing ENSO and its pre-
these linearized models and their adjoint can be Obtaine(ﬂjictability. To this end, we presented the formalism for cy-
without facing fundamental difficulties. However, the deter- ¢ostationary Markov chains and introduced an efficient way
mination of singular vectors associated with ENSO using agf partitioning the state space that also leads directly to an
comprehensive CGCM is highly non-trivial and has not beeninterpretation of the dynamics in terms of coarse-grained un-
achieved yet. The reason is not only computer power but als@taple periodic orbits. One of the most attractive aspects of
the fundamental difference in atmospheric and oceanic timegpis approach is that it does not require a linear approxima-
scales. As shown above, the Markov chain approach allowsion of the dynamics; this stands in contraposition to the sin-
for the extraction of those initial states (or patterns) which gylar vector approach. Another attractive aspect is that the
are associated with the highest (or the lowest) predictabilityanaysis is based on one long, experimental or numerically
without any linearization whatsoever. In order to illustrate generated, data series; this should be compared with ensem-
the type of possible application we have in mind, we havepje forecasting which requires numerous numerical simula-
decomposed the simulated thermocline depth field of the ZGjons. Among the straightforward applications presented in
model into Empirical Orthogonal functions (EOFs). The two gect. 3, is the identification of the physical configuration that
leading EOFs explain about 80% of the variance. These larggaads to the largest (alternatively, the smallest) uncertainty
values of the explained variance are typical for 1 1/2 layerin predictions with a predefined forecast lead; these states
models. We constructed then a Markov chain based on thesge identified separately for each month. A more standard
two leading principal components and searched for those logpplication is the detection of the spring predictability bar-
calized initial stateg) = 8/ which are characterized by the rier and, less standard, its quantification. It should be noted
largest entropy production for a given forecast length. Thisthat the partition into equal weight cells implies that the cells
state is then transformed from cell space back into physicatorresponding to the most unprobable observatfooscupy
space giving a pair of values for the two principal compo- a relatively large interval of the variable’s physical range.
nents of thermocline depth anomaly which is associated withSometimes, this may be undesirable.
the largest rate of information loss. Finally, these values of Needless to say, in order to be able to predict, a good
the two principal components are multiplied with their re- knowledge of the system’s past behaviour is required; this is
spective EOF patterns such as to give an impression of whagn inescapable fact that all practical forecasting techniques
the initial state which leads to the lowest predictability looks have to face. In the context of the present article, this means
like. that 1) sufficiently long data series are required in order to be
We apply this to three seven-month forecasts, initializedable to make accurate and interesting predictions and 2) the
in January, May and September, respectively. The result-
ing MUM'’s are displayed in Fig. 10. We see that the most 12These are usually the most extreme values of the dynamical
unpredictable mode changes during the course of the yearvariables under consideration.
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