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Abstract. We develop the theory of cyclic Markov chains
and apply it to the El Nĩno-Southern Oscillation (ENSO) pre-
dictability problem. At the core of Markov chain modelling
is a partition of the state space such that the transition rates
between different state space cells can be computed and used
most efficiently. We apply a partition technique, which di-
vides the state space into multidimensional cells containing
an equal number of data points. This partition leads to mathe-
matical properties of the transition matrices which can be ex-
ploited further such as to establish connections with the dy-
namical theory of unstable periodic orbits. We introduce the
concept of most and least predictable states. The data basis of
our analysis consists of a multicentury-long data set obtained
from an intermediate coupled atmosphere-ocean model of
the tropical Pacific. This cyclostationary Markov chain ap-
proach captures the spring barrier in ENSO predictability and
gives insight also into the dependence of ENSO predictabil-
ity on the climatic state.

1 Introduction

One of the main challenges being addressed by climate re-
search is that of climate prediction on time scales ranging
from several months to years and up to decades. In this con-
text, modern statistical techniques (e.g. Barnston and Ro-
pelewski, 1992; Penland and Magorian, 1993; Xue et al.,
1994; van den Dool and Barnston, 1995; Tangang et al.,
1997) as well as climate models of different complexity
(e.g. Cane et al., 1986; Zebiak and Cane, 1987; Blumen-
thal, 1991; Goswami and Shukla, 1991a, b; Balmaseda et al.,
1994; Oberhuber et al., 1998; Stockdale et al., 1998; Ji et
al., 1998; Mason et al., 1999; Grötzner et al., 1998) are being
used in order to predict climate fluctuations sufficiently in ad-
vance for societies to take precautionary measures. Probably
the most prominent example of this is the El Niño-Southern
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Oscillation (ENSO) phenomenon which, sometimes, can be
predicted with an anticipation longer than six months.

Despite recent success in predicting ENSO using statisti-
cal and physical models (Latif et al., 1994) it turned out that,
partly due to model-reality mismatches and partly due to ini-
tial state errors, the models perform very well in some years
whereas they fail in others. Similar to the predictability of
low-dimensional nonlinear dynamical systems (Smith et al.,
1999), ENSO predictability is state dependent. To account
for the state dependence of predictability in ENSO models,
singular vector techniques have been employed (Chen et al.,
1995; Eckert, 1997; Moore and Kleeman, 1997a, b). The
singular vectors represent those states of the system which
are associated with the strongest error-growth characteristics.
However, by construction, they only capture the linear error
growth along piecewise linearized trajectories. Furthermore,
the computation of singular vectors in ENSO models requires
a linearized version of the model code as well as of its ad-
joint. For fully coupled general circulation models (CGCMs)
such an approach is not feasible due partly to limited com-
puter resources and partly to the fundamental problem of for-
mulating adjoint operators of coupled systems with different
time scales. In our paper we describe an alternative approach,
based on the statistical investigation of model generated time
series rather than on manipulating computer code (Eckert,
1997; Chen et al., 1995; Moore and Kleeman, 1997a, b). The
statistical technique employed here is based on the estimation
of a dynamical equation for probability densities. In contra-
position to the singular vector approach, see, e.g. Palmer et
al. (1998), this technique is fully nonlinear and is also appli-
cable to CGCM simulations. The essential part of the dynam-
ical equation is a transition matrix which describes the proba-
bility of observing, in one time step, transitions between dif-
ferent states. This so-called Markov chain approach was al-
ready applied to the ENSO prediction problem by Fraedrich
(1988)1. Fraedrich’s results are based on rather short ENSO

1This technique has been successfully applied also in other me-
teorological (Spekat et al., 1983; de Swart and Grasman, 1987;
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time series; his analysis is univariate and it does not take into
account the cyclostationarity of the ENSO system, see Flügel
et al. (1999). The present work improves on these aspects by
applying the theory of cyclic Markov chains to bivariate data
series characterizing ENSO. We point out the analogies be-
tween cyclic Markov chains and the Floquet theory of ordi-
nary differential equations with periodic coefficients. In this
way, e.g. one is able to detect the so-called spring-barrier in
ENSO’s predictability.

Moreover, we partition the system’s state space in such a
way that each multidimensional cell contains the same num-
ber of observations, i.e. the system spends an equal amount
of time in each cell. This turns out to be not only an efficient
way of using the data and the state space, it also leads to a
direct and transparent expression of the dynamics in terms of
permutations matrices acting on the discretized state space,
i.e. in terms of cycles. As the discretization becomes finer,
one expects this cycles expansion to converge into the un-
stable periodic orbits (UPOs) expansion of chaotic attrac-
tors, see, e.g. P. Cvitanovic (1991) and the references therein.
Hence, here one could use the term coarse-grained unstable
periodic orbits in order to stress the fact that our discretiza-
tion of the state space is not arbitrarily fine. A nice example
of UPOs in the ENSO context can be found in Tziperman et
al. (1997). In practice, one can construct reliable transition
matrices for just a small number, for example three, dynami-
cal variables. Therefore, it is of utmost importance to choose
the right (three) variables, otherwise the results may be prac-
tically irrelevant.

The paper is organized as follows: Sect. 2 gives a brief
introduction to the theory of cyclic Markov chains with a
special emphasis on the connections with dynamical systems
and unstable periodic orbits. Also, the connection between
the concept of predictability and a suitably defined entropy
production, or information loss rate, is brought to the fore.
In Sect. 3 we study the state dependence of ENSO as sim-
ulated by an intermediate ENSO model (Zebiak and Cane,
1987). We apply univariate and bivariate Markov chains in
order to determine both the least and the most predictable
states in this model. Also, the predictability spring barrier is
recovered. We conclude in Sect. 4 with a summary and dis-
cussion of the technique we applied, of the limitations that
may show up in practice and of our main results.

2 Theoretical foundation of cyclic Markov chains

Before venturing into ENSO predictability in coupled mod-
els, we briefly describe the theory of Markov chains and dis-
cuss how to estimate master equations from data also in the
case of cyclostationary systems.

Consider a dynamical system withV degrees of freedom
denoted byxα, 1 ≤ α ≤ V . The Markov chain descrip-
tion of the system is obtained by discretizing time as well as
the system’s configuration space. After discretizing the time

Vautard et al., 1990; Nicolis et al., 1997; Egger, 2001) and oceano-
graphic (Cencini et al., 1999) contexts.

variablet, the dynamical variables at timet + 1 are related
to their values at the previous time stept by

xα(t + 1) = f α(x(t), ξ(t), t),

whereξ stands for any possible random factors, while the
explicit time dependence stands for the non-random external
factors. For the sake of illustration and of simplicity, let us
assume that

xα(t + 1) = f α(x, t) + ξα(t) (1)

where the random termsξα(t) are Gaussian, uncorrelated
and their variances are〈
ξα(t)ξβ(t ′)

〉
= 12

α(t)δαβδ(t − t ′). (2)

The case12
α(t) = 0 describes a deterministic system. Au-

tonomous systems correspond tof α(x(t), t) = f α(x(t))

and12
α(t) = 12

α for all α.

Even in the purely deterministic case, it makes sense to
consider the probability of observing, at timet, the dynami-
cal variables having values between sayx and(x + dx). We
denote this probability density byp(x, t) with p(x, t) ≥ 0
and

∫
p(x, t) dVx = 1. The time evolution of this probability

density is expressed then in terms of the so-called Frobenius-
Perron (FP) integral operator

p(y, t + 1) =

∫
dVx L(y | x, t)p(x, t).

One always has that L(y | x, t) ≥ 0 and∫
dVy L(y, x, t) = 1. In the case of additive Gaussian

noise characterized by Eq. (1) and Eq. (2), the explicit form
of the Frobenius-Perron operator is

L(y | x, t) :=

(√
2π
)−V

1−1

· exp

(
−

V∑
α=1

(yα
− f α(x, t))2

212
α(t)

)
, (3)

with 1(t) =
∏V

α=1 1α(t). For autonomous systems, i.e.
L(y | x, t) = L(y | x), one has a stationary probability den-
sity2, call it po(x), which is invariant under the time evolu-
tion, i.e.

po(y) =

∫
dVx L(y | x)po(x).

If the system is non-autonomous but its dynamics is periodic
in time, i.e.L(y | x, t +T ) = L(y | x, t), whereT is the cor-
responding period, then the analogue of the stationary distri-
bution will be time-dependent: besides the oscillations with
periodT it may also contain (sub)harmonics. The system we
shall consider, ENSO, is non-autonomous since its dynamics
is modulated by the yearly seasonal cycle .

2For the sake of simplicity, we assume there is only one such
invariant measure. In general, more than one invariant measure can
exist if bounded noise is assumed.
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Next, one partitions the state space into a finite numberC

of cells. We will identify each cell by a Latin subscript. The
occupation probability of each cell is,

pi(t) :=

∫
i

dVx p(x, t) ≥ 0, (4)

and satisfies

C∑
i=1

pi(t) = 1.

Our partial knowledge about the state of the system at timet

is contained inp(t), we callp(t) either the probability dis-
tribution or the state vector.
Finally, one defines the cell-to-cell transition ratesmt (j, i)

by

mt (j, i) = �−1
i

∫
j
dVy

∫
i
dVx L(y | x, t),

with �i =
∫
i
dVx.

The dimensionless numbersmt (j, i) are the fraction of
times that one observes the system in thej -th cell at time
t + 1 when the system was in thei-th cell at timet. The par-
tition of initial and final states need not be identical. In the
following, we deal always with initial and final partitions that
are not (necessarily) identical but have the same number of
cellsC. The transition ratesmt (j, i) can be seen then as ele-
ments of a nonnegativeC ×C matrix that we shall denote by
mt . The conservation of the total probability takes now the
form,

C∑
i=1

mt (i, j) = 1, for all j. (5)

This means also that the vector(1, 1, . . . , 1, 1) is a left eigen-
vector of the matricesmt with eigenvalue 1. Nonnegative ma-
trices satisfying (5) are called stochastic matrices; they form
a semigroup, i.e. the product of two stochastic matrices is a
stochastic matrix; the inverse of a stochastic matrix, if it ex-
ists, is not necessarily a stochastic matrix. The occupation
probability of each cell will evolve according to

pi(t + 1) =

C∑
j=1

mt (i, j)pj (t),

whenever the probability densityp(x, t) and/or the kernel
L(y | x, t) is sufficiently constant over thex-cells. More-
over, by taking finer partitions with largerC one expects to
approximate the real dynamics with higher precision.

Nonnegative matrices and, more specifically, stochastic
matrices have been extensively studied, see, e.g. Berman and
Plemmons (1979). We recall some of the important proper-
ties that they share. The Perron-Frobenius theorem tells us
that for any stochastic matrixm, 1) there is at least one posi-
tive eigenvector with eigenvalue 1, i.e.m · v = v andvi > 0
for all 1 ≤ i ≤ C, such an eigenvector is called a Perron
vector, 2) all other eigenvalues have absolute values smaller

than or equal to 1 and 3) ifm is irreducible3, then the pos-
itive right eigenvector is unique. The Perron vector, is then
the (unique) stationary distribution,po = v. The stochastic
matrices we shall encounter are irreducible and, moreover,
all their other eigenvalues have absolute values smaller than
1; such matrices are called primitive. Irreducibility means
that there is only one attractor in state space.

As just stated, irreducible stochastic matrices have only
one positive eigenvector. This means that all other eigenvec-
tors have positive and negative components, moreover, some
components may be complex. On the other hand, the state
vectorsp(t) describe probability distributions, i.e. their com-
ponents are nonnegative at all times,pj (t) ≥ 0, for all j and
for all t ≥ 0, as it is ensured by the property (5) satisfied
by the transition matricesmt . These two observations make
evident that the non-Perron eigenvectors are not probability
distributions but deviations away from the stationary distri-
bution, i.e. deviations with respect to the Perron vector. Sim-
ilarly, complex eigenvectors will always be accompanied by
their complex conjugates; the presence of pairs of complex
conjugate eigenvalues tells us that the corresponding eigen-
vectors do not decay monotonically but that they oscillate in
time with a period that equals(2πi) /

[
ln(argλ)

]
, when it

is measured in units of the time step. In the general case,
stochastic matrices are neither symmetric nor normal; on the
physical relevance of nonnormal matrices see, e.g. Lorenz
(1965) and Trefethen et al. (1993).

In order to avoid unnecessary complications, in the next
Subsections we limit the discussion to autonomous systems.
The generalization to non-autonomous systems is done in
Sect. 2.4.

The concept of Markov chains is illustrated and summa-
rized in Fig. 1. This figure also shows the main analogies
with the expansion of deterministic dynamical systems in
terms of eigenvectors of the Frobenius Perron operator.

2.1 Data (equi)partition

Suppose that we are given a long data series consisting ofD

measurements withD � 1. We assume that transient phe-
nomena (stataistically transient), if present, play a negligible
role in the data series. These measurements allow us to de-
fine the system state space and subsequently to partition this
space into a number of cells. The construction of these cells
can be done in an infinite number of different ways. The
computation of some important dynamical quantities is sen-
sitive to the way in which the cells are constructed. Conse-
quently, one is interested in finding those partitions that make
reliable and efficient computations possible.

The partitions we have been using are constructed as fol-
lows. Consider first the case when one measures only one
dynamical variable. Then theD measurements are spread
between a minimum and a maximum value; these extreme

3A nonnegative matrixm is irreducible if and only if there is no

permutationP such thatPmP† is of the form

(
S1 0
C S2

)
, whereS1

andS2 are square matrices
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Fig. 1. Data partition for the univariate and bivariate cases.

values define the variable’s range. Partition this range into
C intervals such that each interval contains an equal number
of data points. The number of data points in each interval is
d = D/C. Ideally, we would like to have enough points in
each cell so that, potentially, every cell can be accessed from
every cell, i.e. one would like to haved ≥ C, i.e.D ≥ C2.

Consider next the two dimensional case, i.e. when one
measures two simultaneous dynamical variables. Firstly, par-
tition the D data points into

√
C cells along the coordinate

corresponding to one of the dynamical variables, each cell
containingD/

√
C points4. Then partition each of these cells

into
√

C cells along the second coordinate corresponding to
the other measured dynamical variable. In this way one gen-
eratesC cells, each one containingd = D/C data points.
The procedure is illustrated in Fig. 1.

This partitioning can be applied to higher-dimensional
measurements. In this way we can always partition the state
space into ‘cells of equal weight’, i.e. the time series spends
the same amount of time in each of the cells. It is intuitively
clear that this is a very efficient way of defining a partition.
This partition does not automatically ensure that the system’s

4For the sake of simplicity, we are assuming that
√

C and
D/

√
C are integers.

description satisfies the Markovian property. The Markovian
property is assumed in our approach and has to be verified a
posteriori. Like every sorting procedure, the manipulations
required for this task are very time consuming and special
algorithms have been developed in order to do this in an ef-
ficient way, see, e.g. Chap. 14 ofThe nature of mathemati-
cal modellingby Gershenfeld, Cambridge University Press,
(1999) and the references therein.

2.2 Double stochastic matrices and unstable periodic
orbits

Since we constructed our partition in such a way that each
cell contains the same number of occurrences, it follows that
the probability distribution corresponding to the complete
data set is represented by the state vector

pdata =

1/C
...

1/C

 . (6)

Then one must have

m · pdata = pdata,

i.e. pdata as given by Eq. (6) is the stationary distribution or
Perron vectorpo with eigenvalue 1. This means that, besides
the probability conservation constraint (5), the transition ma-
trices satisfy also

C∑
k=1

m(i, k) = 1. (7)

Non-negative matrices satisfying both constraints (5) and (7)
are calleddoubly stochastic matrices. Also, these matrices
form a semigroup.

A theorem by Birkhoff (1946) states a remarkable property
of these matrices: every doubly stochasticC × C matrix can
be written as a convex combination of permutation matrices,
i.e.

doubly stochasticM → M = c1P1 + · · · + cNPN (8)

with ci > 0,

N∑
i=1

ci = 1 and N ≤ C2
− 2C + 2.

Recall that a permutation matrix is a doubly stochastic matrix
whose elements are either 0 or 1. It is easy to see that such
a matrix only exchanges the contents between cells and that
by rising it to an appropriate power one gets the identity ma-
trix. In other words, a permutation matrix describes a (com-
bination) of cyclic, periodic evolution. When the number of
cells C goes to infinity, one expects this Birkhoff expansion
to converge into the cycles expansion that has been devel-
oped for studying dynamical systems, see, e.g. Cvitanović
(1991) and the references therein. It describes the dynamics
in terms of coarse-grained unstable periodic orbits. They are
unstable to the extent thatci < 1 for all i; in fact, one can
associate a lifetime 1/| ln ci | to the permutationPi . Just like
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the cycles expansion, the Birkhoff expansion is not unique.
For example, the Markov chain described by the following
doubly stochastic transition matrix,

0 0 1/2 1/2
1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2


can be decomposed in terms of permutations in more than
one way. One possible decomposition is

1

2


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

+
1

2


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

Another possible decomposition is:

1

2


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

+
1

2


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 .

Generally, one is interested in the expansion (8) with the
smallest possible number of termsN and, consequently, with
the largest amplitudesci (or longest lifetimes).

In closing this Subsection, it is worthwhile recalling that,
for a large class of irreducible stochastic matricesm, it is
possible to find positive diagonal matricesD1 andD2 such
thatD1 · m · D2 is a doubly stochastic matrix, see Brualdi et
al. (1966) and Sinkhorn and Knopp (1967).

2.3 Information loss

The transition matricesm may be singular, i.e. one or more
eigenvalues may be zero. Evidently, in such a case, some of
the information contained inp(t) is irretrievably lost when
passing tot + 1. More generally, the decay of all modes5

but for the Perron vector, means that information about the
departure of the state vectorp(t) from the stationary state
po is lost. How can we quantify this information loss? A
convenient and often used measure of the ‘distance’ between,
say, a statep(t) andpo is6

I (t) = +

C∑
i=1

pi(t) ln
pi(t)

pi
o

≥ 0,

This quantity is also bounded from above, lnC ≥ I (t), the
maximum value ofI (t) is achieved when only one compo-
nent ofp(t) is different from zero. The decay of the modes
implies that, on the average, the information contentI (t) di-
minishes7 until it reaches zero, i.e. whenpi(t) = pi

o.

5We use ‘mode’ and ‘eigenvector’ indistinguishably.
6There are other possible definitions; this one is the only exten-

sive one, i.e. extensive over uncorrelated degrees of freedom.
7The decay ofI (t) is not necessarily monotonic: transiently it

may happen thatI (t) increases.

Suppose that att = 0 we know with high precision the
state of our system, i.e. att = 0 the probability distribution
is totally localized in one cell, say it is in cellk,

pi(0) = δi
k

so that the information attains its maximum possible value
Ik(0) = ln C. One time-step later, the state will bepi(1) =

m(i, k) and the corresponding information content will be

Ik(1) =

C∑
i=1

m(i, k) ln m(i, k) + ln C.

Therefore, the information lost in the first time step of the
evolution is

1Ik := Ik(0) − Ik(1) = −

C∑
i=1

m(i, k) ln m(i, k) ≥ 0.

By construction, all cells have equal weight (or probability),
therefore the probability of starting from cellk is just 1/C.

Averaging over all possible initial conditions, i.e. over all ini-
tial cells, we get the average loss of information in one time-
step

〈1I 〉 = −
1

C

C∑
k=1

C∑
i=1

m(i, k) ln m(i, k) ≥ 0. (9)

Since permutation matrices are characterized bym(i, k) =

δi
f (k) for some invertiblef (k) we see that permutation ma-

trices achieve the lower bound in information loss. In fact,
permutation matrices are the only doubly stochastic matrices
with 〈1I 〉 = 0. This agrees with our expectations since a
permutation corresponds to a totally reversible dynamics.

Notice that the information loss is strongly dependent
upon the chosen partition. For example, one can construct
the cells in such a contrived way that all the transition rates
equal 1/C, i.e.m(i, k) = 1/C for all (i, j) and the informa-
tion loss achieves its largest possible value lnC. On the other
hand, the minimum information loss,taken over all possible
partitions, is an intrinsic property of the system.

2.4 Cyclic Markov chains and Floquet theory

The effects of the yearly cycle are clearly present in the
ENSO phenomenon. In this Subsection we explain how to
include this fact in a Markov-chain description.

The data on which the analysis is based are monthly av-
erages of some relevant variables. The partition described in
the previous Subsections is applied to each month, i.e. we
create 12 equipartitions, each with a numberC of cells, each
cell containingD/12C number of measurements. This is
illustrated in Fig. 1. The precise position in state space of
the cells differs from month to month. Next, we compute
12 transition-rate matrices, e.g.m1(i, j) denotes the transi-
tion rate from thej -th January cell to thei-th February cell
and so successively up to the December to January transition-
rates matrixm12. Therefore,M1 the transition matrix after a
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yearly cycle starting from month 1 and ending in the same
month one year later, is given by

M1 := m12 · m11 · · · · · m2 · m1

Notice that it is not necessary to compute the twelve in-
termediary month-to-month transition matricesmµ in or-
der to computeM1, it can be computed directly from the
yearly transition rates, i.e.M1(i, j) is the fraction of month-
1 data points that were in thej -th cell and reached thei-
th cell of the same month one year later. In this way, it is
possible to construct twelve year-to-year transition matrices
Mµ, µ = 1, . . . , 12. Since themµ are doubly stochastic and
irreducible, so are the yearly transition rate matricesMµ.

In general, the twelve yearly transition matricesMµ will
be different, however, it is easy to show that they have
the same eigenvalues{ρn | 0 ≤ n ≤ (C − 1)} and that their
eigenvectors are simply related. This can be seen as follows:
multiply the eigenvalue equation

M1 · pn = ρnpn

on the left by the transition matrixm1 and obtain

M2 · m1 · pn = ρnm1 · pn

with M2 = m1 · m12 · · · · · m2.

In other words,m1·pn is an eigenvector ofM2 corresponding
to the same eigenvalueρn. Similarly, m2 · m1 · pn is theM3-
eigenvector corresponding toρn.

Being doubly stochastic, all the yearly transition matrices
Mµ have the same Perron vector[1, 1, . . . , 1] with eigen-
valueρ0 = 1. However, recall that the partitions associated
with each month are different; consequently, the Perron vec-
tor in, e.g. January describes a different probability distri-
bution than the, e.g. February Perron vector. In fact, these
twelve Perron vectors describe the stationary pdf’s of each
month.

The analogy with the classical Floquet theory of ordinary
differential equations (1883), see, e.g. Cronin (1980), be-
comes evident by introducing a set of matricesYµ, the ana-
logue of Floquet’s fundamental matrix solution, as

Yµ := [p
µ
0 ,p

µ
1 , . . . , p

µ
C−1], µ = 1, . . . , 12,

where the columnsp µ
n are the eigenvectors of the transition

matrix from monthµ to the same month one year later, i.e.

Mµ · p µ
n = ρnp

µ
n with n = 0, 1, . . . , C − 1,

and the e.g. eigenvalues are, e.g. ordered according to their
absolute values,|ρn| ≥ |ρn+1| with ρ0 = 1. Our indexµ

corresponds in the Floquet approach to the time modulo the
period, in our case, modulo twelve months. Then one has
that

Yµ+12 = Yµ · 8

where8, the analogue of Floquet’s monodromy matrix, is
the diagonal matrix[ρ0, ρ1, . . . , ρC−1] and the time-indexµ
is shifted by twelve months, i.e. by one complete cycle.

In the Floquet theory one introduces the monodromy matrix
in order to show that it is time-independent; we have already
proved that, i.e. that the8 as defined above is, indeed, inde-
pendent ofµ.

2.5 Reversible and irreversible dynamics

Let us split a doubly stochastic transition matrixM into its
symmetric and antisymmetric parts,

Mik = Sik + Aik (10)

Sik =
1

2
(Mik + Mki) Aik =

1

2
(Mik − Mki) . (11)

Due to the doubly stochastic character ofM , one has

0 ≤ Sik = Ski ≤ 1, (12)∑
i

Sik = 1,∑
k

Sik = 1.

In words: the symmetric part of a doubly stochastic matrix
is also doubly stochastic. The dynamics generated purely
by such a doubly stochastic, symmetricS would consist of
decaying, non-oscillating modes, we say that such anS is
purely dissipative or diffusive. In mechanics, such a dynam-
ics is called irreversible. The matrix elements of the anti-
symmetric partA satisfy

−
1

2
≤ Aik ≤

1

2
, (13)∑

i

Aik = 0, (14)∑
k

Aik = 0, (15)

|Aik| ≤ Sik. (16)

The dynamics generated purely by the anti-symmetric part
A consists of non-decaying, oscillating modes, i.e.A alone
would generate a non-dissipative (or conservative) time evo-
lution. In mechanics, such a dynamics is called reversible.
In the next paragraphs we will discover more reasons for as-
sociatingA with the conservative part of the dynamics andS
with the diffusive part.

The complete dynamics, i.e. the one generated by
M = S+ A, cannot be obtained by a simple juxtaposition or
factorization of the dynamics generated by these two com-
ponents separately because, in general,SA 6= AS, conse-
quently, the eigenvectors of these matrices will differ.

Let us express the average information loss in terms of the
symmetric and anti-symmetric components,

〈1I 〉 = −
1

C

C∑
k=1

C∑
i=1

[Sik + Aik] ln [Sik + Aik]

= −
1

C

C∑
k=1

C∑
i=1

Sik ln Sik

[
1 +

Aik

Sik

]
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−
1

C

C∑
k=1

C∑
i=1

Aik ln [Sik + Aik]

= −
1

C

C∑
k=1

C∑
i=1

Sik ln Sik

−
1

C

C∑
k=1

C∑
i=1

Sik ln

[
1 +

Aik

Sik

]

−
1

C

C∑
k=1

C∑
i=1

Aik ln [Sik + Aik] . (17)

Therefore, we can write〈1I 〉 = 〈1I 〉S + 〈1I 〉A/S where
〈1I 〉S is the information loss that would be generated by the
doubly stochastic matrixS exclusively, namely

〈1I 〉S = −
1

C

C∑
k=1

C∑
i=1

Sik ln Sik ≥ 0,

while 〈1I 〉A/S depends both onS andA,

〈1I 〉A/S = −
1

C

C∑
k=1

C∑
i=1

Sik ln

[
1 +

Aik

Sik

]

−
1

C

C∑
k=1

C∑
i=1

Aik ln [Sik + Aik] , (18)

and it vanishes forA = 0. Taking into account the antisym-
metry ofA, one has

〈1I 〉A/S = −
1

C

C∑
k=1

C∑
i<k

Sik ln

[
1 −

(
Aik

Sik

)2
]

−
1

C

C∑
k=1

C∑
i<k

Aik ln
Sik + Aik

Sik − Aik

. (19)

Since |Aik| ≤ Sik, one sees that each term under the first
summation sign is negative or zero and that each term under
the second summation sign is positive or zero. Moreover, one
can check thata ln [(s + a) / (s − a)] ≥ −s ln

[
1 − (a/s)2]

for all 0 ≤ s ≤ 1 and|a| ≤ s. Therefore,〈1I 〉A/S ≤ 0, i.e. a
non-vanishing anti-symmetric componentA implies that the
entropy production of the doubly stochastic matrix(S+ A)

is smaller than that of the doubly stochastic matrixS. The
most extreme example of this reduction is provided by the
permutations matrices: since〈1I 〉

permutation
= 0 one has that

〈1I 〉
permutation
A/S = − 〈1I 〉

permutation
S < 0.

For all these reasons it is natural to associate the anti-
symmetric partA with the conservative part of the dynamics.
On the other hand, the symmetric partSstems not only from
the diffusive part but also from the conservative part of the
dynamics, as can be clearly seen in the case of a permutation
matrix: a permutation matrix is a purely conservative dynam-
ics and yet it has a nonvanishing symmetric partS. One is led
to define the purely diffusive components ofM asSkl −|Akl |

and to measure the overall purely diffusive character ofM by(
1 − C−1∑

k,l |Akl |
)
.

3 Predictability of an intermediate ENSO model

In this section we apply the Markov chain concepts sketched
above to data generated by the Zebiak and Cane (ZC) ENSO
model (Zebiak and Cane, 1987). The ZC model is a cou-
pled atmosphere-ocean model for the tropical region. The
atmospheric component consists of a Gill-type, steady-state,
linear shallow water model (Gill, 1980) which is formu-
lated on an equatorial beta plane. Dissipation is parame-
terized in terms of linear Newtonian cooling and Rayleigh
friction. Furthermore, a surface-wind parameterization of
low-level moisture convergence is used. This model simu-
lates reasonably well the steady state atmospheric response
to typical sea surface temperature anomalies (SSTA) in the
tropics. The ocean model is formulated for a rectangular
tropical ocean basin. It is based on a linear, reduced grav-
ity model, including a 50 m deep frictional layer, which ac-
counts for surface intensification of wind-driven currents.
The thermodynamic core of this ocean model takes into ac-
count three-dimensional temperature advection by mean and
anomalous ocean currents, a linear dependence between sur-
face heat flux anomalies and SSTA and the asymmetric effect
of vertical advection on temperature. Subsurface temperature
anomalies are diagnosed from the variations of the model’s
upper layer thickness. The seasonal background fields of sur-
face winds and wind divergence, as well as of sea surface
temperature are prescribed.

The Zebiak and Cane model generates chaotic ENSO os-
cillations in the standard parameter set. As to whether
the observations are more adequately described in terms
of a stochastically excited damped oscillator (Penland and
Sardeshmukh, 1995) or of a chaotic oscillation is an interest-
ing issue that has not been solved yet. We do not intend to
dwell into the details of this interesting controversy. Small
changes in the standard parameters of the ZC model can lead
to stable ENSO oscillations, for which noise becomes cru-
cial., This sensitivity should be kept in mind when interpret-
ing the results of the ZC model. Very often, however, the
possibility is ignored that ENSO can be self-sustained dur-
ing some decades, whereas it might be stable during other
decades. In fact there is observational evidence (An and
Jin, 2000) that interdecadal background changes in the trop-
ical Pacific can trigger changes in the growth rate of ENSO,
strong enough to cross the Hopf bifurcation point.

We performed a 640 year long simulation with the Ze-
biak and Cane ENSO model using the standard parameter
configuration; we chose to limit the length of the data set
to 640 years because it would be very difficult to generate
longer time series from more complex GCMs . Our analysis
makes use of the simulated sea surface temperature anoma-
lies as well as of the thermoclince depth anomalies. In par-
ticular, we compute the popular Niño 3 SSTA index (Zebiak
and Cane, 1987) which characterizes ENSO effectively. This
index is defined as the SSTA averaged over the region 5◦ S–
5◦ N, 150◦ W–90◦ W. For our bivariate analysis we also use
the thermocline depth anomalies averaged over the region
10◦ S–10◦ N, 120◦ W–180◦ W.
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Fig. 2. Seasonal dependence of the entropy production: Entropy as
a function of lead time and of the initialization month.

It is well-known (Balmaseda et al., 1995, Kumar and
Hoerling, 1998) that ENSO forecast skills depend on the
initial state and in particular, on the season of the year.
The so-called predictability barrier characterizes the fact that
ENSO predictions initialized in the boreal fall have a sig-
nificantly better skill than those initialized in the boreal
spring8. This effect might be due to the seasonal changes
of ENSO instability related to changing ocean stratification
and atmosphere-ocean interactions. As to whether the Ze-
biak Cane model is a “realistic” model with respect to sim-
ulating the seasonality of the atmosphere-ocean interactions
shall not be discussed here9.

We studied this phenomenon by looking at the information
loss as a function of lead time and initialization month10.

8Recently Torrence and Webster (2000) introduced the term per-
sistence barrier in order account for the fact that the drop of the au-
tocorrelation observed during spring (Balmaseda et al., 1995) is not
necessarily associated with a complete lack of predictability. Dy-
namical ENSO prediction models, however, show that ENSO fore-
cast skills are strongly affected by this barrier. In the following, we
will thus, use the old term predictability barrier.

9As for the role of the ZC-model, the ZC-model was chosen not
because we consider it to be a perfect model for ENSO but just as
an illustrative example. The cyclic Markov chain concept can be
applied to any kind of ENSO model that yields either stochastically
excited linear oscillations or self-sustained chaotic oscillations.

10The transition matrices for aν-month lead forecast starting
from monthµ can be computed asm(ν+µ) = m(ν+µ−1)··m(µ).

However, such a matrix multiplication might increase the rounding
errors and this should be avoided in order to ensure that Eq. (5) is
satisfied. Hence, we compute the corresponding transition matrix
elements, called themmab, directly by counting how many data
points in monthµ located in cella end up in cellb ν months later.
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Fig. 3. Initial-state dependence of dispersion in probability space;
the initialization month is January.

3.1 Univariate analysis

Let us first consider an univariate analysis using only the El
Niño 3 SSTA index. The computed information loss based
on the 640-year long time series for different initialization
months and different lead prediction times is shown in Fig. 2.
The partition used here isD = 640, C = 16, d = 40 which
ensures the accessibility conditionsd ≥ C andD ≥ C2.

One observes that the entropy production quantifying the
rate of spread of the probability density is modulated by
the annual cycle. More precisely: there is a larger entropy
production from March and April and a lower entropy pro-
duction for late summer to autumn initialization months;
this is the so-called ENSO predictability barrier. One ob-
serves furthermore, that for forecasts initialized in, e.g. Au-
gust (month 8) the entropy production levels off at a lead time
of about six to seven months whereas it increases again for
longer lead times. These results are not new but they do illus-
trate the utility of cyclic Markov chains in order to quantify
predictability.

Notice that in this approach information about the pre-
dictability of the system is extracted from one, long, time se-
ries and not from a number of simulations initialized on dif-
ferent points of the attractor, as is done in ensemble-forecast
studies.

In addition to the seasonal cycle effect, the predictability
of ENSO might depend also on the state of the tropical Pa-
cific itself. This implies that an El Niño forecast starting, e.g.
from an El Nĩno state might have a different quality than a
forecast initialized during an intermediate state.

Figure 3 shows three Markov chain probability forecasts,
all of them starting in January but from different initial con-
ditions. The initial probability density functions (pdf) were
chosen to bepi

0 = δi
j , with j=1, 7 and 14, respectively. The

first one corresponds to strong La Niña conditions, the last
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Fig. 4. Initial-state dependence of dispersion in probability space;
the initialization month is April.

one to strong El Nĩno conditions. The time evolution for
these initial pdfs is shown for lead times from one to six
months.

One observes that, starting from strong La Niña condi-
tions, upper panel of Fig. 3 the system remains in the La
Niña state for about six months. The same holds for strong
El Niño conditions, see lower panel of Fig. 3. In contrast to
these two large anomaly cases, neutral conditions are much
less predictable as can be seen from the fast spread of the pdfs
in the middle panel of this Figure. Probably this is a manifes-
tation of the fact that under neutral conditions an oscillation
exhibits a velocity maximum in state space. This could im-
ply that neutral ENSO conditions in January are much more
unstable than extreme ENSO conditions.

In Fig. 4 we show the results obtained from the same type
of analysis but done now for highly localized initial condi-
tions starting in April. We observe qualitatively the same
features as for the January initialization case. However, the
dispersion rate of the pdfs is much stronger during the boreal
spring than during the boreal winter. The main quantitative
differences with respect to Fig. 3 can be seen for leads rang-
ing from one to three months.

Had we chosen a partition of the state-space into equidis-
tant intervals of the index, then the transition rates from and
to the extreme-value cells would have been estimated with
large errors. Our partition into equal-weight cells has the ad-
vantage that the transition rates for the extreme values are
estimated as precisely as those for the neutral conditions. On
the other hand, a drawback of this partition may be the re-
duced physical resolution for extreme ENSO events.

The state dependence of ENSO predictability is summa-
rized in Fig. 5. It displays the information loss associated
with the El Niño 3 SSTA index for different forecasting
lengths. The January initial states are chosen aspi

0 = δi
j ,

j=1,..., 16.
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Fig. 5. Entropy as a function of the January initial state for forecast-
ing lengths of 3, 6, 9 and 12 months.

In agreement with the previous findings, one observes sat-
uration of the entropy production at around a six-month lead
and that predictions started from neutral ENSO conditions
are less predictable than those initialized during large ENSO
events. For a given lead time, we shall call Most Unpre-
dictable Modes (MUMs) those initial states that generate
the largest information loss and Least Unpredictable Modes
(LUMs) those initial states that generate the smallest infor-
mation loss. In our analysis we obtain MUMs and LUMS for
each month of the year, separately.

In closing this Subsection, let us analyze the eigenmodes
of the year-to-year transition matricesMµ = 511

i=0mµ+i . As
shown in previous sections, all theMµ have a Perron eigen-
vectorpµ

0 = (1/C, . . . , 1/C), such thatMµ · p
µ
0 = p

µ
0 .

These twelve Perron vectors are nothing else but the aver-
age, stationary distributions corresponding to each month.
Recalling that each month has its own partition of state
space, one realizes that, indeed, the twelve Perron vectors
describe different distributions in state space. It is only af-
ter a complete twelve-month cycle that we recover the same
state space distribution. The distributions corresponding to
all twelve Perron vectors have the maximum possible entropy
for a partition withC cells, namely, their entropy is lnC. Ac-
cordingly, there is no information loss when one starts from
this distribution. Another way of stating this is that the Per-
ron eigenvector has an infinite lifetime. The time evolution of
the Perron vectors starting from the initial month of January
is shown in Fig. 6.

We observe that in the first stages of the time evolution
the eigenvector ofM is rotated away from the El Niño state,
whereas the pdf does not change significantly for SSTA val-
ues smaller than 2 K. The eigenvector turns back to its origi-
nal position after about 7 months.

The other eigenvectors have eigenvalues whose absolute
value is smaller than 1, i.e.|ρn| < 1 for n > 0. This means
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that their lifetimes are finite, i.e. that they decay in time.
There is another essential difference with respect to the Per-
ron vectors, namely, the other eigenvectors are not positive.
This reflects the fact that these eigenvectors are not prob-
ability distributions but only departures of probability dis-
tributions with respect to the steady distribution, i.e. from
the corresponding Perron vector. In meteorological parlance,
they are anomalies. Since the matricesMµ are real, com-
plex eigenvalues and their corresponding complex eigenvec-
tors appear always in conjugate pairs; in such a case, the cor-
responding departures from the Perron vector do not decay
monotically but decay as damped oscillations. There is a
connection between these eigenvalues and the periods and
lifetimes of the coarse-grained unstable periodic orbits, see,
e.g. Cvitanovíc et al. (1991).

3.2 Bivariate analysis

Next, we present a bivariate study, i.e. Markov chains which
are derived from two ENSO-characterizing variables. In the
first example, we compute the information loss based on the
El Niño 3 SSTA index as generated by the ZC model and the
west equatorial thermocline depth anomalies, averaged over
the 10◦ S–10◦ N, 120◦ W–180◦ W for different initialization
months and different lead prediction times. We use Eq. (9)
and the cyclostationary transition matrices computed accord-
ing to the scheme shown in the lower panel of Fig. 1. The par-
tition we use is characterized byD = 640, C = 16, d = 40
which ensures the accessibility conditionsd ≥ C andD ≥

C2. The results are displayed in Fig. 7 where the entropy
production has been split into three parts.

– The entropy production〈1I 〉 based on the full dynam-
ics is shown in Fig. 7 upper left panel. Qualitatively and
quantitatively we observe very similar features as in the
univariate case displayed in Fig. 2. The spring barrier
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as computed for the total (upper left panel), symmetric (lower left
panel) and non-dissipative dynamics (lower right panel). A state
space view of the SSTA-TDA- trajectory is displayed in the upper
right panel.

is retrieved as well as the slowing down of entropy pro-
duction after about six months.

– The entropy production〈1I 〉S due only to the symmet-
ric part of the transition rate matrix is shown in Fig. 7
lower left panel. It can be seen that the total entropy
production is mainly dominated by the symmetric part.

– The non-dissipative part〈1I 〉A/S which is related to
the anti-symmetric part of the transition rate matrix ex-
plains only a small part of the information loss. How-
ever, a strongly pronounced seasonal modulation of in-
formation gain becomes apparent with strongest infor-
mation gain to be seen in the boreal summer season.

In Fig. 8 we show the one-month lead transition matrix
starting in June, its eigenvectors, eigenvalues, and its sym-
metric and anti-symmetric parts. The eigenvectors are shown
in cell-number space. As one can see, also in this case the
total transition matrix is dominated by the symmetric part.
Hence, even for a one month forecast the dynamics is largely
dissipative. The eigenvalue spectrum (Fig. 8f) shows several
oscillating modes with frequencies comparable to their decay
rates. How these oscillatory modes can be interpreted phys-
ically is a question that requires further work. A first step
would consist in studying whether they remain unchanged or
not when one increases the number of state space cellsC. As
it is evident, whenC = 16 the longest period that one can
detect is 16 months. Similarly, more research should lead to
a better understanding of the information contained, e.g. in
the asymmetric part of the transition matrices.

In Fig. 9 we present the same results for a three month
lead forecast. If this and the previous matrix would contain
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exactly the same modes, then their spectra would be simply
related to each other: the damping factor and the phase of the
eigenvalues of the second matrix would be the cubic power
and three times those of the one month lead matrix, respec-
tively. The associated eigenvectors would show the evolu-
tion in state space of the corresponding anomaly. As one can
see, the spectra of the two matrices are not so simply related.
This is not surprising since there may be more than sixteen
modes that dominate the evolution at different phases of the
yearly cycle. By increasing the number of cells11 one may
detect more dynamically relevant modes, for example, those

11This will require a larger set of data.
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ranging from 130◦ E to 85◦ W) for a 7 month forecast initialized in
January, May and September, respectively.
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with periods longer than 16× 3 months= 48 months. More-
over, as discussed in Sect. 2.2, the transition matrices can
be expanded in terms of cyclic permutations that correspond
to the coarse-grained unstable periodic orbits of dynamical
systems’ theory, Cvitanović et al. (1991). Such a decom-
position in terms of UPOs may, in fact, be more revealing
than a decomposition in terms of eigenvectors. Again, by en-
larging the number of cells, it should be possible to detect
more UPOs and to disentangle them better. In this respect, it
should be noticed that probably the best way to detect and to
disentangle UPOs is to work with three or more dynamical
variables, as it is done in Tziperman et al. (1997).

3.3 Most Unpredictable Modes (MUM’s)

It has become quite popular to study similar aspects of error
growth in ENSO forecasts (Chen et al., 1995b, Xue et al.,
1994, Moore and Kleeman, 1997; Eckert, 1997) due to ini-
tial state errors within the linear framework of singular vec-
tors (Lorenz, 1965). These vectors are associated with the
fastest linear growth of the initial perturbations due to the
non-normality of the tangent linear propagator (Trefethen et
al., 1993). They can be computed from the integral propaga-
tor of the linearized model. In the case of reduced complex-
ity, coupled, atmosphere-ocean models (Chen et al., 1995b;
Xue et al., 1994; Moore and Kleeman, 1997; Eckert, 1997)
these linearized models and their adjoint can be obtained
without facing fundamental difficulties. However, the deter-
mination of singular vectors associated with ENSO using a
comprehensive CGCM is highly non-trivial and has not been
achieved yet. The reason is not only computer power but also
the fundamental difference in atmospheric and oceanic time
scales. As shown above, the Markov chain approach allows
for the extraction of those initial states (or patterns) which
are associated with the highest (or the lowest) predictability
without any linearization whatsoever. In order to illustrate
the type of possible application we have in mind, we have
decomposed the simulated thermocline depth field of the ZC
model into Empirical Orthogonal functions (EOFs). The two
leading EOFs explain about 80% of the variance. These large
values of the explained variance are typical for 1 1/2 layer
models. We constructed then a Markov chain based on these
two leading principal components and searched for those lo-
calized initial statespj

0 = δ
j
i which are characterized by the

largest entropy production for a given forecast length. This
state is then transformed from cell space back into physical
space giving a pair of values for the two principal compo-
nents of thermocline depth anomaly which is associated with
the largest rate of information loss. Finally, these values of
the two principal components are multiplied with their re-
spective EOF patterns such as to give an impression of what
the initial state which leads to the lowest predictability looks
like.

We apply this to three seven-month forecasts, initialized
in January, May and September, respectively. The result-
ing MUM’s are displayed in Fig. 10. We see that the most
unpredictable mode changes during the course of the year.

The MUM computed for a seven-month forecast initialized
in January characterizes the discharging of the warm pool.
Warm thermocline waters swash the equatorial eastern Pa-
cific. This situation is very similar to a situation shortly be-
fore a major El Nĩno event is developed and downwelling
Kelvin waves propagate from east to west. The most un-
predictable mode for a September forecast has a similar pat-
tern to the one initialized during May. MUMs for May and
September are characterized by a deep warm pool thermo-
cline and a shallow eastern equatorial Pacific. This pattern is
dominated mainly by the leading EOF. The MUM for May
corresponds to the situation approximately 7 months before
a major El Nĩno event. The warm pool is anomalously deep
and short perturbations can lead to the initiation of down-
welling Kelvin waves which need about two to three months
to cross the Pacific. It is worthwhile noticing that the MUMs
computed for different initialization months have very sim-
ilar structures to the singular vectors computed for the ZC
model, see, e.g. Chen et al. (1995b).

4 Summary and discussion

Our main objective has been to illustrate the capacity and
utility of the Markov chain approach in a geophysical con-
text, more specifically, in characterizing ENSO and its pre-
dictability. To this end, we presented the formalism for cy-
clostationary Markov chains and introduced an efficient way
of partitioning the state space that also leads directly to an
interpretation of the dynamics in terms of coarse-grained un-
stable periodic orbits. One of the most attractive aspects of
this approach is that it does not require a linear approxima-
tion of the dynamics; this stands in contraposition to the sin-
gular vector approach. Another attractive aspect is that the
analysis is based on one long, experimental or numerically
generated, data series; this should be compared with ensem-
ble forecasting which requires numerous numerical simula-
tions. Among the straightforward applications presented in
Sect. 3, is the identification of the physical configuration that
leads to the largest (alternatively, the smallest) uncertainty
in predictions with a predefined forecast lead; these states
are identified separately for each month. A more standard
application is the detection of the spring predictability bar-
rier and, less standard, its quantification. It should be noted
that the partition into equal weight cells implies that the cells
corresponding to the most unprobable observations12 occupy
a relatively large interval of the variable’s physical range.
Sometimes, this may be undesirable.

Needless to say, in order to be able to predict, a good
knowledge of the system’s past behaviour is required; this is
an inescapable fact that all practical forecasting techniques
have to face. In the context of the present article, this means
that 1) sufficiently long data series are required in order to be
able to make accurate and interesting predictions and 2) the

12These are usually the most extreme values of the dynamical
variables under consideration.
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records should be of more than one relevant dynamical vari-
able. Moreover, the choice of these variables is crucial, e.g.
if two variables are strongly correlated then one of them is
nearly redundant and should be ignored. These two require-
ments have been satisfied in, e.g. Tziperman et al. (1997).

Another important question that must be addressed is the
so-calledMarkovian assumptionthat lays behind the Markov
chain approach. The Markovian assumption or Markovian
approximation consists in assuming thatp(x, t + 1), the
probability at time stept + 1, is completely determined
by p(x, t), the probability at the previous time stept. No-
tice that this is more general than a Markov chain, i.e. the
‘Markovian models’ often found in the literature are not nec-
essarily Markov chains. In practice, the Markovian assump-
tion is often violated because the set of variablesx that one
uses is usually (much) smaller than the total number of rele-
vant variables. Whether the Markovian assumption holds or
not can be checked a posteriori, e.g. by computing correla-
tion functions and comparing them with the corresponding
correlation functions in the original data. In many cases one
will find that the real system shows stronger, longer lived
correlation functions than the Markov chain model does. In
principle, the violations of the Markovian approximation can
be eliminated by refining the partition and/or by enlarging
the setx of dynamical variables, e.g. by including past val-
ues of the dynamical variables, etc. In practice, this is hardly
feasible.

These comments on the validity of the Markovian approx-
imation have important implications for some of the results
we have obtained. In particular, it should be clear that some
results are no more thanlower boundsto predictability. In its
turn, this has implications for the development of sophisti-
cated physical models: the effort needed in order to develop
physical, accurate dynamical models can be justified only if
the predictions obtained from such models have a lower un-
certainty than the ones obtained from Markov chain models
like the one presented in this article.

Our future work will be devoted to the application of cyclic
Markov chains to ENSO data obtained from long CGCM
simulations. It is our goal to identify those patterns which are
associated with least and highest predictability. Furthermore,
we plan to study the time evolution of CGCM ENSO pre-
dictability more in detail. This can be achieved by projecting
the physical fields onto the MUMs and LUMs. The result-
ing timeseries quantify how simulated ENSO predictability
is modulated in time. Maybe it is possible to attribute phys-
ical meaning to these predictability timeseries, such as es-
tablishing that, e.g. if the thermocline is anomalously deep
for several decades then we might expect better intrinsic pre-
dictability of the ENSO system as compared to eras with rel-
atively shallow thermocline. This will eventually lead to the
generation of probabilistic physical ENSO models.
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casts of El Nĩno, Nature, 321, 827–832, 1986.

Cencini, M., Lacorata, G., Vulpiani, A., and Zambianchi, E.: Mix-
ing in a meandering jet: A Markovian Approximation, J. Phys.
Oceanogr., 29, 2578–2593, 1999.

Chen, D., Zebiak, S. E., Busalacchi, A. J., and Cane, M. A.: An
improved procedure for El Niño forecasting, Science, 269, 1699–
1702, 1995a.

Chen, Y-Q., Battisti, D. S., Palmer, T. N., Barsugli, J., and
Sarachik, E. S.: A study of the predictability oftropical Pacific
SST in a coupled atmosphere/ocean model using singular vector
analysis: the role of the annual cycle and the ENSO cycle, Mon.
Wea. Rev., 125, 831–845, 1995b.

Cronin, J.: Differential equations, Marcel Dekker, New York, 1980.
Cvitanovíc, P.: Periodic orbits as the skeleton of classical and quan-

tum chaos, Physica D, 51, 138, 1991.
Eckert, C.: PhD Dissertation, University of Hamburg, 1997.
Egger, J.: Master equations for climatic parameter sets, submitted,

2000.
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