1,194 research outputs found

    Site Energies of Active and Inactive Pheophytins in the Reaction Center of Photosystem II from Chlamydomonas Reinhardtii

    Get PDF
    31 Pags. The definitive version is available at: http://pubs.acs.org/journal/jpcbfkIt is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction centers (RCs) is pheophytin a (Pheo a) within the D1 protein (PheoD1), while PheoD2 (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the last two decades assigned the Qy-states of PheoD1 and PheoD2 bands near 678–684 nm and 668–672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986–998; Cox et al. J. Phys. Chem. B 2009, 113, 12364–12374] of the electronic structure of the PSII RC reversed the location of the active and inactive Pheos, suggesting that the mean site energy of PheoD1 is near 672 nm, whereas PheoD2 (~677.5 nm) and ChlD1 (~680 nm) have the lowest energies (i.e., the PheoD2-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Qy absorption maxima at 676–680 nm [Germano et al. Biochem. 2001, 40, 11472–11482; Germano et al. Biophys. J. 2004, 86, 1664–1672]. To provide more insight into the site energies of both PheoD1 and PheoD2 (including the corresponding Qx transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch PheoD1 is genetically replaced with chlorophyll a (Chl a). We show that the Qx-/Qy-region site-energies of PheoD1 and PheoD2 are ~545/680 nm and ~541.5/670 nm, respectively, in good agreement with our previous assignment [Jankowiak et al. J. Phys. Chem. B 2002, 106, 8803–8814]. The latter values should be used to model excitonic structure and excitation energy transfer dynamics of the PSII RCs.Partial support to B.N. (involved in calculations) was provided by the NSF EPSCoR Grant. V.Z. (involved in writing the manuscript) acknowledges support by NSERC. R.T.S., R.P., and M.S. were involved in the design and preparation of D2-mutant and RCs. They acknowledge support from USDOE, Photosynthetic Antennae Research Center (R.T.S.), MICIN (Grant AGL2008-00377) in Spain (R.P.), and the U.S. Department of Energy’s Photosynthetic Systems Program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences under NREL Contract #DE-AC36-08-GO28308 (M.S.).Peer reviewe

    Comparison of Serum and Cervical Cytokine Levels Throughout Pregnancy Between Preterm and Term Births

    Get PDF
    Objective: To assess differences in cytokine levels in cervicovaginal fluid (CVF) and serum across trimesters between women with preterm births (PTBs) and full-term births. Study Design: This multicenter study enrolled 302 women with a singleton gestation. CVF and serum cytokines, interleukin 1α (IL-1α), IL-1β, IL-6, IL-8, IL-10, C-reactive protein (CRP), tumor necrosis factor (TNF)-α, and matrix metalloproteinase (MMP)-8, were measured. Women with at least one cytokine assessment and noted PTB status in their medical record were retained in the study (N ¼ 272). Data were analyzed using mixed modeling (main effects of PTBs and time/trimester). Results: For the CVF values of IL-6, IL-8, IL-10, TNF-α, and CRP, and serum MMP-8, those who delivered preterm had significantly higher values than the full-term group regardless of trimester. For the serum values of IL-1β, IL-6, and TNF-α, those delivering preterm had significantly lower values than those delivering full-term regardless of trimester. For IL-1β in CVF, the cytokine was significantly higher in the PTB group for second and third trimesters only, relative to the full-term group. Conclusion: For each CVF cytokine that differed by birth status, values were higher for PTB than term, averaged over trimester. Numerous cytokine profiles varied across trimesters in women delivering term versus preterm in both CVF and serum

    Comparison of Serum and Cervical Cytokine Levels Throughout Pregnancy Between Preterm and Term Births

    Get PDF
    Objective To assess differences in cytokine levels in cervicovaginal fluid (CVF) and serum across trimesters between women with preterm births (PTBs) and full-term births. Study Design This multicenter study enrolled 302 women with a singleton gestation. CVF and serum cytokines, interleukin 1α (IL-1α), IL-1β, IL-6, IL-8, IL-10, C-reactive protein (CRP), tumor necrosis factor (TNF)-α, and matrix metalloproteinase (MMP)-8, were measured. Women with at least one cytokine assessment and noted PTB status in their medical record were retained in the study (N = 272). Data were analyzed using mixed modeling (main effects of PTBs and time/trimester). Results For the CVF values of IL-6, IL-8, IL-10, TNF-α, and CRP, and serum MMP-8, those who delivered preterm had significantly higher values than the full-term group regardless of trimester. For the serum values of IL-1β, IL-6, and TNF-α, those delivering preterm had significantly lower values than those delivering full-term regardless of trimester. For IL-1β in CVF, the cytokine was significantly higher in the PTB group for second and third trimesters only, relative to the full-term group. Conclusion For each CVF cytokine that differed by birth status, values were higher for PTB than term, averaged over trimester. Numerous cytokine profiles varied across trimesters in women delivering term versus preterm in both CVF and serum

    A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data

    Full text link
    We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the Planck satellite over the patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the residuals appear consistent with noise after accounting for differences in angular resolution and filtering. We then calculate (1) the cross-spectrum between two independent halves of SPT data, (2) the cross-spectrum between two independent halves of Planck data, and (3) the cross-spectrum between SPT and Planck data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free calibration parameter---i.e., we find no evidence for systematic errors in either data set. As a by-product, we improve the precision of the SPT calibration by nearly an order of magnitude, from 2.6% to 0.3% in power. Finally, we compare all three cross-spectra to the full-sky Planck power spectrum and find marginal evidence for differences between the power spectra from the SPT-SZ footprint and the full sky. We model these differences as a power law in spherical harmonic multipole number. The best-fit value of this tilt is consistent among the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt is a sample variance fluctuation in the SPT-SZ region relative to the full sky. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.Comment: 15 pages, 9 figures. Published in The Astrophysical Journal. Current arxiv version matches published versio

    A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

    Get PDF
    The Planck cosmic microwave background (CMB) temperature data are best fit with a LCDM model that is in mild tension with constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg2\text{deg}^2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650≤ℓ≤2500650 \leq \ell \leq 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in \citet{hou17} by comparing LCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from such tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters nsn_s and Ase−2τA_se^{-2\tau}. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and, at most, weak evidence for a breakdown of LCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at ℓ>2000\ell >2000.Comment: 14 pages, 7 figures. Updated 1 figure and expanded on the reasoning for fixing the affect of lensing on the power spectrum instead of varying Alen

    Extragalactic millimeter-wave point source catalog, number counts and statistics from 771 square degrees of the SPT-SZ Survey

    Full text link
    We present a point source catalog from 771 square degrees of the South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey at 95, 150, and 220 GHz. We detect 1545 sources above 4.5 sigma significance in at least one band. Based on their relative brightness between survey bands, we classify the sources into two populations, one dominated by synchrotron emission from active galactic nuclei, and one dominated by thermal emission from dust-enshrouded star-forming galaxies. We find 1238 synchrotron and 307 dusty sources. We cross-match all sources against external catalogs and find 189 unidentified synchrotron sources and 189 unidentified dusty sources. The dusty sources without counterparts are good candidates for high-redshift, strongly lensed submillimeter galaxies. We derive number counts for each population from 1 Jy down to roughly 9, 5, and 11 mJy at 95, 150, and 220 GHz. We compare these counts with galaxy population models and find that none of the models we consider for either population provide a good fit to the measured counts in all three bands. The disparities imply that these measurements will be an important input to the next generation of millimeter-wave extragalactic source population models.Comment: 23 pages, 8 figures, submitted to Ap

    Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey

    Full text link
    We present an internal consistency test of South Pole Telescope (SPT) measurements of the cosmic microwave background (CMB) temperature anisotropy using three-band data from the SPT-SZ survey. These measurements are made from observations of ~2500 deg^2 of sky in three frequency bands centered at 95, 150, and 220 GHz. We combine the information from these three bands into six semi-independent estimates of the CMB power spectrum (three single-frequency power spectra and three cross-frequency spectra) over the multipole range 650 < l < 3000. We subtract an estimate of foreground power from each power spectrum and evaluate the consistency among the resulting CMB-only spectra. We determine that the six foreground-cleaned power spectra are consistent with the null hypothesis, in which the six cleaned spectra contain only CMB power and noise. A fit of the data to this model results in a chi-squared value of 236.3 for 235 degrees of freedom, and the probability to exceed this chi-squared value is 46%.Comment: 21 pages, 4 figures, current version matches version published in JCA
    • …
    corecore