83 research outputs found

    Measurements of scattering observables for the pdpd break-up reaction

    Get PDF
    High-precision measurements of the scattering observables such as cross sections and analyzing powers for the proton-deuteron elastic and break-up reactions have been performed at KVI in the last two decades and elsewhere to investigate various aspects of the three-nucleon force (3NF) effects simultaneously. In 2006 an experiment was performed to study these effects in p+d\vec{p}+d break-up reaction at 135 MeV with the detection system, Big Instrument for Nuclear polarization Analysis, BINA. BINA covers almost the entire kinematical phase space of the break-up reaction. The results are interpreted with the help of state-of-the-art Faddeev calculations and are partly presented in this contribution.Comment: Proceedings of 19th International IUPAP Conference on Few-Body Problems in Physics, Bonn University, 31.08 - 05.09.2009, Bonn, GERMAN

    Evidence of the Coulomb force effects in the cross sections of the deuteron-proton breakup at 130 MeV

    Get PDF
    High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV deuteron energy are compared with the theoretical predictions obtained with a coupled-channel extension of the CD Bonn potential with virtual Delta-isobar excitation, without and with inclusion of the long-range Coulomb force. The Coulomb effect is studied on the basis of the cross-section data set, extended in this work to about 1500 data points by including breakup geometries characterized by small polar angles of the two protons. The experimental data clearly prefer predictions obtained with the Coulomb interaction included. The strongest effects are observed in regions in which the relative energy of the two protons is the smallest.Comment: 9 pages, 3 figures, submitted to Physics Letters

    Influence of three-nucleon force effects on polarization observables of the H-1((d)over-bar,pp)n breakup reaction at 130 mev

    Get PDF
    High-precision vector and tensor breakup analyzing powers for the reaction 1H(~d, pp)n at 130 MeV were evaluated for a large phase space region. Results are compared with rigorous theoretical calculations based on realistic nucleon–nucleon potentials as well as on chiral perturbation theory approach. Theoretical predictions generally describe data quite well, only in a few cases influence of three-nucleon forces is significant

    Vector and tensor analyzing powers in deuteron-proton breakup at 130 MeV

    Get PDF
    High-precision data for vector and tensor analyzing powers for the 1H(d,pp)n reaction at a 130-MeV deuteron beam energy have been measured over a large part of the phase space. Theoretical predictions based on various approaches to describe the three nucleon (3N) system reproduce very well the vector analyzing power data and no three-nucleon force effect is observed for these observables. Tensor analyzing powers are also very well reproduced by calculations in almost the whole studied region, but locally certain discrepancies are observed. For Axy such discrepancies usually appear, or are enhanced, when model 3N forces, TM99 or Urbana, are included. Problems of all theoretical approaches with describing Axx and Ayy are limited to very small kinematical regions, usually characterized by the lowest energy of the relative motion of the two protons

    Elastic proton-deuteron scattering at intermediate energies

    Full text link
    Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This paper reviews the background of this problem and presents new data taken at KVI. Differential cross sections and analyzing powers for the 2H(p,d)p^{2}{\rm H}(\vec p,d){p} and H(d,d)p{\rm H}(\vec d,d){p} reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.Comment: 5 pages, 4 figures, submitted to PR

    Cross Sections of the Deuteron-Proton Breakup at 130 MeV:A Probe of Three-Nucleon System Dynamics

    Get PDF
    Three-nucleon system dynamics can be investigated quantitatively by comparing observables calculated with the use of Faddeev equations with results of precise measurements. Proper description of the experimental data can be achieved only if the dynamical models include, in addition to the nucleon-nucleon interaction, subtle effects of suppressed degrees of freedom, effectively introduced by means of genuine three-nucleon forces. A large set of high precision, exclusive cross-section data for the (1)H(d,pp)n breakup reaction at 130 MeV contributes significantly to constrain the physical assumptions underlying the theoretical interaction models. Comparison of nearly 1,800 cross section data points with the predictions using nuclear interactions generated in various ways, allowed to establish importance of including both, the three-nucleon and the Coulomb forces to significantly improve the description of the whole data set

    Three-nucleon force effects in the analyzing powers of the dp breakup at 130 MeV

    Get PDF
    A measurement of the analyzing powers for the 1H(~d, pp)n breakup reaction at 130MeV polarized deuteron beam energy was carried out at KVI Groningen. The experimental setup covered a large fraction of the phase space. Obtained tensor analyzing powers T22 for selected kinematical configurations have been compared to theoretical predictions based on various approaches: the rigorous Faddeev calculations using the realistic nucleon–nucleon potentials with and without three nucleon force (3NF) models, predictions of the chiral perturbation theory, and coupled channel calculations with the explicit degrees of freedom. In the presented configurations the results of all predictions are very close to one another and there are no significant 3NF influences. Not all of the data can be satisfactory reproduced by the theoretical calculations

    Investigation of the Three-Nucleon System Dynamics in the Deuteron-Proton Breakup Reaction

    Get PDF
    Precise and large sets of cross section, vector A x , A y and tensor A xx , A xy , A yy analyzing power data for the 1 H(d, pp)n breakup reactions were measured at 100 and 130 MeV deuteron beam energies with the SALAD and BINA detectors at KVI and the Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which model the three-nucleon system dynamics. The cross section data reveal a sizable three-nucleon force (3NF) and Coulomb force influence. In case of the analyzing powers very low sensitivity to these effects was found and the data are well describe by 2N models only. For A xy at 130 MeV, serious disagreements were observed when 3NF models are included in the calculations
    corecore