479 research outputs found

    Discharge responses associated with rapid snow cover ablation events in the Susquehanna and Wabash River basins

    Get PDF
    In the mid-latitudes, snow plays a critical role in regional hydroclimate, with snow ablation variability in ephemeral regions representing an area of essential research. Due to a lack of historical snow-water-equivalent data in the eastern United States, recent research has substituted daily snow depth changes for ablation. These studies, however, do not explicitly examine if such a substitution yields a snowmelt hydrological signal, an important component of water resource management. As such, this study evaluates if ablation events, as defined as a daily snow depth decrease, subsequently result in increased river discharge within two similarly sized watersheds in the eastern United States: the Wabash and Susquehanna River basins. For both basins, \u3e75% of snow ablation events resulted in a positive river discharge response (increase in discharge) at a 3-day lag. Furthermore, results show a significant and positive relationship between ablation event frequency and seasonal discharge response, such that an increase (decrease) in seasonal snow ablation event frequency yields an increase (decrease) in associated seasonal river discharge at a 3-day lag. These relationships indicate that inter-diurnal decreases in snow depth do carry hydrological implications, adding confidence that such a definition of ablation is appropriate for climatological applications

    Aerosol Jet Printing of a Benzocyclobutene-Based Ink as Adhesive Material for Wafer Bonding Application

    Get PDF
    Aerosol jet printing (AJP) is an emerging additive manufacturing technology that is gaining increasing attention in the electronic field. Several studies have been carried out on the AJP of conductive, semiconductive, and dielectric polymers for electronic applications. However, wafer bonding is an application that is still uncovered by literature. Therefore, in this work, the AJP of benzocyclobutene (BCB) as a polymeric adhesive for wafer bonding is presented for the first time. A thorough characterization of the processing parameters is carried out to identify the most ideal conditions for printing at a relatively high speed. Then, square patterns are printed, proving the versatility of the AJP technology in terms of the reachable thickness of the deposited BCB patterns. Complex patterns with a resolution of approximate to 60 mu m are also printed. The bonding properties of the BCB are characterized from a morphological and mechanical point of view. In particular, the shear strength of the BCB coatings deposited with AJP is approximate to 39 MPa and it is comparable with the shear strength of BCB coating deposited by spin-coating. Consequently, AJP represents a valid alternative for the deposition of polymeric adhesive for wafer bonding

    Association between functional EGF+61polymorphism and glioma risk

    Get PDF
    Epidermal growthf actor (EGF) plays a critical role in cancer. A polymorphism in the EGF gene (EGF+61) may influence its expression and contribute to cancer predisposition and aggressiveness. In the present study, we aimed to elucidate the role of EGF+61in glioma susceptibility and prognosis. Experimental Design:A case-control study involving197 glioma patients and 570 controlswas done. Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95% confidence intervals (95% CI). False-positive report probability was also assessed.The luciferase reporter gene assay was used to ascertain the functional consequences of this polymorphism. Results: Corroborating the univariate analysis, the multivariate model showed that the G allele conferred higher risks for gliomas (OR,1.32; 95% CI,1.04-1.67), glioblastomas (OR,1.47; 95% CI, 1.02-2.10), and oligodendrogliomas (OR,1.55; 95% CI,1.07-2.23).TheGG genotypeswere associatedwithincreased risk for gliomas (OR,1.71; 95%CI,1.07-2.73), glioblastomas (OR, 2.03; 95% CI, 1.02-4.05), and oligodendrogliomas (OR, 2.72; 95% CI, 1.18-6.28). In addition, the AG+GG genotypes were associated withhigher risk for gliomas (OR,1.52; 95% CI,1.03-2.23) and oligodendrogliomas (OR, 2.80; 95% CI,1.35-5.79). No significant associationwas observed between the EGF+61polymorphism and glioblastoma or oligodendroglioma patients’overall survival. The luciferase reporter gene assay exhibited a significant increased promoter activity for the G variant compared withthe referenceA allele. Conclusions: These findings support the role of the EGF+61polymorphism as a susceptibility factor for development of gliomas and show its implication on EGF promoter activity.Sixth Research Framework Programme of the European Union, Project INCA (LSHC-CT-2005-018704

    Crosslinked Polyesters as Fully Biobased Coatings with Cutin Monomer from Tomato Peel Wastes

    Get PDF
    Cutin, one of the main structural components of tomato peels, is a waxy biopolymer rich in hydroxylated fatty acids. In this study, 10,16-dihydroxyhexadecanoic acid (10,16-diHHDA) was extracted and isolated from tomato peels and exploited to develop fully crosslinked polyesters as potential candidates for replacing fossil-based metal protective coatings. A preliminary screening was conducted to select the base formulation, and then a design of experiments (DoE) was used as a methodology to identify the optimal composition to develop a suitable coating material. Different formulations containing 10,16-diHHDA and other biorefinery monomers, including 2,5-furandicarboxylic acid, were considered. To this end, all polyesters were characterized through differential scanning calorimetry (DSC) and gel content measurements to determine their T-g value and crosslinking efficiency. Compositions exhibiting the best trade-off between T-g value, chemical resistance, and sufficiently high 10,16-diHHDA content between 39 and 48 wt.% were used to prepare model coatings that were characterized for assessing their wettability, scratch hardness, chemical resistance, and adhesion to metal substrates. These polyester coatings showed a T-g in the range of 45-55 degrees C, a hydrophobic behavior with a water contact angle of around 100 degrees, a good solvent resistance (>100 MEK double rubs), and an adhesion strength to steel higher than 2 MPa. The results obtained confirmed the potential of cutin-based resins as coatings for metal protection, meeting the requirements for ensuring physicochemical properties of the final product, as well as for optimizing the valorization of such an abundant agri-food waste as tomato peels

    Impact of Chitosan-Based Foliar Application on the Phytochemical Content and the Antioxidant Activity in Hemp (Cannabis sativa L.) Inflorescences

    Get PDF
    In the present study, the phytochemical content and the antioxidant activity in the inflorescences of the monoecious hemp cultivar Codimono grown in southern Italy were assessed, and their elicitation was induced by foliar spray application of 50 mg/L and 250 mg/L of chitosan (CHT) at three different molecular weights (low, CHT L; medium, CHT M; high CHT H). The analysis of the phytochemical profile confirmed that cannabinoids were the most abundant class (54.2%), followed by flavonoids (40.3%), tocopherols (2.2%), phenolic acids (1.9%), and carotenoids (1.4%). Cannabinoids were represented almost exclusively by cannabidiol, whereas cannabigerol and Δ9-tetrahydrocannabinol were detected at very low levels (the latter was below the legal limit of 0.3%). The most abundant flavonoids were orientin and vitexin, whereas tocopherols were mainly represented by α-tocopherol. The antioxidant activity was found to be positively correlated with flavonoids and tocopherols. Statistical analysis revealed that the CHT treatments significantly affected the phytochemical content and the antioxidant activity of hemp inflorescences. Notably, a significant increase in the total phenolic content (from +36% to +69%), the α-tocopherol (from +45% to +75%) and β+γ-tocopherol (from +35% to +82%) contents, and the ABTS radical scavenging activity (from +12% to +28%) was induced by all the CHT treatments. In addition, treatments with CHT 50 solutions induced an increase in the total flavonoid content (from +12% to +27%), as well as in the vitexin (from +17% to +20%) and orientin (from +20% to +30%) contents. Treatment with CHT 50 L almost always resulted in the greatest increases. Overall, our findings indicated that CHT could be used as a low-cost and environmentally safe elicitor to improve the health benefits and the economic value of hemp inflorescences, thus promoting their employment in the food, pharmaceutical, nutraceutical, and cosmetic supply chains

    Versatile and non-cytotoxic GelMA-xanthan gum biomaterial ink for extrusion-based 3D bioprinting

    Get PDF
    Extrusion-based 3D bioprinting allows the 3D printing of bioinks, composed of cells and biomaterials, to mimic the complex 3D hierarchical structure of native tissues. Successful 3D bioprinting requires bioinks with specific properties, such as biocompatibility, printability, and biodegradability according to the desired application. In the present work, we aimed at developing a new versatile blend of gelatin methacryloyl-xanthan gum (GelMA-XG) suitable for extrusion-based 3D bioprinting with a straightforward process. To this end, we first optimized the process of gelatin methacryloyl (GelMA) synthesis by investigating the impact of different buffer solutions on the degree of functionalization, swelling degree, and degradation rate. The addition of xanthan gum (XG) enabled further tuning of biodegradability and an improvement of GelMA printability. Specifically, an optimal concentration of XG was found through rheological characterization and printability tests. The optimized blend showed enhanced printability and improved shape fidelity as well as its degradation products turned out to be non-cytotoxic, thus laying the foundation for cell-based applications. In conclusion, our newly developed biomaterial ink is a promising candidate for extrusion-based 3D bioprinting

    Analgesic effects of intravenous flunixin and intrafunicular lidocaine or their combination for castration of lambs.

    Get PDF
    Abstract Objective: To analyse the effectiveness of intrafunicular lidocaine and intravenous flunixin for reducing pain and signs of stress in lambs undergoing surgical castration. Design: Randomised controlled trial. Setting: One university teaching hospital in Italy. Participants: 30 healthy male lambs, 9-12 weeks old. Intervention: Allocation to five groups: a control group (C), undergoing general anaesthesia but not castration; a surgery group (S), undergoing orchiectomy without analgesic treatment; a surgery-lidocaine group (SL), undergoing orchiectomy and receiving intrafunicular 2 per cent lidocaine solution; a surgery-flunixin group (SF), undergoing orchiectomy and receiving intravenous flunixin; a surgery-flunixin-lidocaine group (SFL), undergoing orchiectomy and receiving both intrafunicular lidocaine and intravenous flunixin. Main outcome measures: Nociception and stress were assessed through intraoperative indicators, serum cortisol concentration, glycaemia, behaviour, immune response and clinical evaluation of the heart rate (HR), respiratory rate and rectal temperature after surgery. Results: Groups S and SL showed increased values of intraoperative HR, mean arterial pressure and postoperative cortisol concentration. In group SFL, cortisol values were similar to those of group C. No other difference could be detected. Conclusions: The combination of intravenous flunixin and intrafunicular lidocaine reduced the pain and discomfort of lambs castrated under general anaesthesia. Intrafunicular lidocaine alone did not prevent pain or discomfort associated with castration

    E-Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in Hereditary Diffuse Gastric Cancer

    Get PDF
    E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC) and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R), of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated). Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo
    • …
    corecore