192 research outputs found

    Developing the Surface Chemistry of Transparent Butyl Rubber for Impermeable Stretchable Electronics

    Get PDF
    Transparent butyl rubber is a new elastomer that has the potential to revolutionize stretchable electronics due to its intrinsically low gas permeability. Encapsulating organic electronic materials and devices with transparent butyl rubber protects them from problematic degradation due to oxygen and moisture, preventing premature device failure and enabling the fabrication of stretchable organic electronic devices with practical lifetimes. Here, we report a methodology to alter the surface chemistry of transparent butyl rubber to advance this material from acting as a simple device encapsulant to functioning as a substrate primed for direct device fabrication on its surface. We demonstrate a combination of plasma and chemical treatment to deposit a hydrophilic silicate layer on the transparent butyl rubber surface to create a new layered composite that combines Si-OH surface chemistry with the favorable gas-barrier properties of bulk transparent butyl rubber. We demonstrate that these surface Si-OH groups react with organosilanes to form self-assembled monolayers necessary for the deposition of electronic materials, and furthermore demonstrate the fabrication of stretchable gold wires using nanotransfer printing of gold films onto transparent butyl rubber modified with a thiol-terminated self-assembled monolayer. The surface modification of transparent butyl rubber establishes this material as an important new elastomer for stretchable electronics and opens the way to robust, stretchable devices

    Metal-Interface-Elastomer (MINE) Structures for Stretchable Electronics

    Get PDF
    The future of soft, conformable, and robust wearable electronics will require elastomers to provide mechanical stabilization, a soft surface to interact with human wearers, and a crucial physical barrier to protect stretchable devices from the environment. It is a difficult challenge, however, for a single elastomer to fulfill each of these needs. Here, we present a new approach that fuses a membrane of poly(dimethylsiloxane) (PDMS) onto the surface of a transparent butyl rubber (T-IIR) substrate using an organosilane-based molecular glue. The resulting membrane-interface-elastomer (MINE) structures uniquely combine the surface chemistry of PDMS with the intrinsically low gas permeability of T-IIR for the fabrication of robust stretchable devices. Our most intriguing finding, however, is that the T-IIR-PDMS interface, buried microns below the PDMS surface, exerts a remarkable influence on metal films deposited on the PDMS membrane surface from below, improving stretching and conductance performance by orders of magnitude

    Stretchable Ultrasheer Fabrics as Semitransparent Electrodes for Wearable Light-Emitting e-Textiles with Changeable Display Patterns

    Get PDF
    Despite the development throughout human history of a wealth of textile materials and structures, the porous structures and non-planar surfaces of textiles are often viewed as problematic for the fabrication of wearable e-textiles and smart clothing. Here, we demonstrate a new textile-centric design paradigm in which we use the textile structure as an integral part of wearable device design. We coat the open framework structure of an ultrasheer knitted textile with a conformal gold film using solution-based metallization to form gold-coated ultrasheer electrodes that are highly conductive (3.6 ± 0.9 Ω/sq) and retain conductivity to 200% strain with R/R0 \u3c 2. The ultrasheer electrodes produce wearable, highly stretchable light-emitting e-textiles that function to 200% strain. Stencil printing a wax resist provides patterned electrodes for patterned light emission; furthermore, incorporating soft-contact lamination produces light-emitting textiles that exhibit, for the first time, readily changeable patterns of illumination

    Transparent, Stretchable, and Conductive SWNT Films Using Supramolecular Functionalization and Layer-by-Layer Self-Assembly

    Get PDF
    We demonstrate films of single-walled carbon nanotubes (SWNTs) on the elastomer polydimethylsiloxane (PDMS) that are stretchable, conductive, and transparent. Our fabrication method uses the supramolecular functionalization of SWNTs with conjugated polyelectrolytes to generate aqueous dispersions of positively- and negatively-charged SWNTs, followed by layer-by-layer self-assembly onto a PDMS substrate. Adding bilayers of positively- and negatively-charged SWNTs to the surface causes the sheet resistance and the % transmittance of the film to both progressively decrease. The sheet resistance decreases sharply in the first five bilayers as the layer-by-layer process efficiently establishes the percolation network, whereas the % transmittance declines more gradually. Films with 25 bilayers are transparent (75% at 550 nm) and conductive (560 ± 90 ohms/sq). The combination of electrostatic and pi-stacking forces very effectively bind the SWNTs within the film, producing smooth film surfaces (root-mean-square roughness of 18 nm) and enabling the films to remain conductive up to 80% elongation. We demonstrate the use of the SWNT films as transparent conductive electrodes in light-emitting devices and as soft strain sensors that are both wearable and transparent

    A Self-Assembled, Low-Cost, Microstructured Layer for Extremely Stretchable Gold Films

    Get PDF
    We demonstrate a simple, low-cost, and green approach to deposit a microstructured coating on the silicone elastomer polydimethylsiloxane (PDMS) that can be coated with gold to produce highly stretchable and conductive films. The microstructured coating is fabricated using an aqueous emulsion of poly(vinyl acetate) (PVAc): common, commercially available white glue. The aqueous glue emulsion self-assembles on the PDMS surface to generate clustered PVAc globules, which can be conformally coated with gold. The microstructured surface provides numerous defect sites that localize strain when the structure is stretched, resulting in the initiation of numerous microcracks. As the structure is further elongated, the microcracks interact with one another, preventing long-range crack propagation and thus preserving the conduction pathway. The resistance of PDMS/glue/gold structures remains remarkably low (23x the initial resistance) up to 65% elongation, making these structure useful as stretchable interconnects. Decreasing the concentration of the PVAc aqueous emulsion reduces the density of defect sites of the microstructure, which increases the change in resistance of the gold films with stretching. In this way, we can tune the resistance changes of the PDMS/glue/gold structures and increase their sensitivity to strain. We demonstrate the use of these structures as wearable, soft strain sensors

    Time-to-response toxicity analysis as a method for drug susceptibility assessment in salmon lice

    Get PDF
    The salmon louse Lepeophtheirus salmonis (Krøyer, 1837) is an ectoparasite causing infections ofwild and farmed Atlantic salmon (Salmo salar L.) in the Northern hemisphere.While L. salmonis control at commercial mariculture sites increasingly employs non-medicinal approaches, such as cage designs reducing infection rates and biological control through cleaner fish, anti-parasitic drugs are still a requirement for effective fish health care. With only a limited range of salmon delousing agents available, all of which have been in use for more than a decade, drug resistance formation has been reported for different products. Successful resistance management requires reliable susceptibility assessment, which is usually achieved through L. salmonis bioassays. These tests involve the exposure of parasites to different drug concentrations and require significant numbers of suitable L. salmonis stages. The present study reports an alternative bioassay that is based on time-to-response toxicity analyses and can be carried outwith limited parasite numbers. The assay determines the median effective time (ET50), i.e., the time required until impaired swimming and/or attachment behaviour becomes apparent in 50% of parasites, by conducting repeated examinations of test animals starting at the timepointwhere exposure to a set drug concentration commences. This experimental approach further allows the estimation of the apparent drug susceptibility of individual L. salmonis by determining their time to response, which may prove useful in experiments designed to elucidate associations between genetic factors and the drug susceptibility phenotype of parasites. Three laboratory strains of L. salmonis differing in susceptibility to emamectin benzoate were characterised using standard 24 h bioassays and time-to-response toxicity assays. While both the median effective concentration (EC50) and the ET50 showed variability between experimental repeats, both types of bioassay consistently discriminated susceptible and drug-resistant L. salmonis laboratory strains. Statement of relevance: Infections by sea lice cause significant costs to the global salmon farming industry, which have been estimated to exceed €300 million per year worldwide. Control of sea lice still relies to a significant extent on chemical delousing; however, chemical control is threatened by resistance formation. Resistance can be combated by rotation between different drugs and strategic implementation of non-medicinal strategies. However, resistance management requires reliable and feasible methods of susceptibility assessment. The present study is a technical note introducing a novel approach to susceptibility assessments in sea lice. The method can be applied in susceptibility assessments on farms,where it offers the advantage of a reduced requirement of parasites for testing. In addition, the novel method allows deriving the times of parasite require to showa response after drug treatment has started, thus providing a variable characterizing the drug susceptibility phenotype of individual parasites. Accordingly, the bioassay approach presented here will be useful for studies aiming at unravelling the genetic determinants of drug resistance

    Dihydropyridine receptors and type 1 ryanodine receptors constitute the molecular machinery for voltage-induced Ca2+ release in nerve terminals

    Get PDF
    Ca2+ stores were studied in a preparation of freshly dissociated terminals from hypothalamic magnocellular neurons. Depolarization from a holding level of -80 mV in the absence of extracellular Ca2+ elicited Ca2+ release from intraterminal stores, a ryanodine-sensitive process designated as voltage-induced Ca2+ release (VICaR). The release took one of two forms: an increase in the frequency but not the quantal size of Ca2+ syntillas, which are brief, focal Ca2+ transients, or an increase in global [Ca2+]. The present study provides evidence that the sensors of membrane potential for VICaR are dihydropyridine receptors (DHPRs). First, over the range of -80 to -60 mV, in which there was no detectable voltage-gated inward Ca2+ current, syntilla frequency was increased e-fold per 8.4 mV of depolarization, a value consistent with the voltage sensitivity of DHPR-mediated VICaR in skeletal muscle. Second, VICaR was blocked by the dihydropyridine antagonist nifedipine, which immobilizes the gating charge of DHPRs but not by Cd2+ or FPL 64176 (methyl 2,5 dimethyl-4[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate), a non-dihydropyridine agonist specific for L-type Ca2+ channels, having no effect on gating charge movement. At 0 mV, the IC50 for nifedipine blockade of VICaR in the form of syntillas was 214 nM in the absence of extracellular Ca2+. Third, type 1 ryanodine receptors, the type to which DHPRs are coupled in skeletal muscle, were detected immunohistochemically at the plasma membrane of the terminals. VICaR may constitute a new link between neuronal activity, as signaled by depolarization, and a rise in intraterminal Ca2+

    Generalized stochastic Schroedinger equations for state vector collapse

    Get PDF
    A number of authors have proposed stochastic versions of the Schr\"odinger equation, either as effective evolution equations for open quantum systems or as alternative theories with an intrinsic collapse mechanism. We discuss here two directions for generalization of these equations. First, we study a general class of norm preserving stochastic evolution equations, and show that even after making several specializations, there is an infinity of possible stochastic Schr\"odinger equations for which state vector collapse is provable. Second, we explore the problem of formulating a relativistic stochastic Schr\"odinger equation, using a manifestly covariant equation for a quantum field system based on the interaction picture of Tomonaga and Schwinger. The stochastic noise term in this equation can couple to any local scalar density that commutes with the interaction energy density, and leads to collapse onto spatially localized eigenstates. However, as found in a similar model by Pearle, the equation predicts an infinite rate of energy nonconservation proportional to δ3(0)\delta^3(\vec 0), arising from the local double commutator in the drift term.Comment: 24 pages Plain TeX. Minor changes, some new references. To appear in Journal of Physics

    A description of the origins, design and performance of the TRAITS-SGP Atlantic salmon Salmo salar L. cDNA microarray

    Get PDF
    The origins, design, fabrication and performance of an Atlantic salmon microarray are described. The microarray comprises 16 950 Atlantic salmon-derived cDNA features, printed in duplicate and mostly sourced from pre-existing expressed sequence tag (EST) collections [SALGENE and salmon genome project (SGP)] but also supplemented with cDNAs from suppression subtractive hybridization libraries and candidate genes involved in immune response, protein catabolism, lipid metabolism and the parr–smolt transformation. A preliminary analysis of a dietary lipid experiment identified a number of genes known to be involved in lipid metabolism. Significant fold change differences (as low as 1.2x) were apparent from the microarray analysis and were confirmed by quantitative real-time polymerase chain reaction analysis. The study also highlighted the potential for obtaining artefactual expression patterns as a result of cross-hybridization of similar transcripts. Examination of the robustness and sensitivity of the experimental design employed demonstrated the greater importance of biological replication over technical (dye flip) replication for identification of a limited number of key genes in the studied system. The TRAITS (TRanscriptome Analysis of Important Traits of Salmon)–salmon genome project microarray has been proven, in a number of studies, to be a powerful tool for the study of key traits of Atlantic salmon biology. It is now available for use by researchers in the wider scientific community
    corecore