110 research outputs found

    Charged Particle Pseudorapidity Distributions in Au+Al, Cu, Au, and U Collisions at 10.8 Aβ‹…\cdotGeV/c

    Full text link
    We present the results of an analysis of charged particle pseudorapidity distributions in the central region in collisions of a Au projectile with Al, Cu, Au, and U targets at an incident energy of 10.8~GeV/c per nucleon. The pseudorapidity distributions are presented as a function of transverse energy produced in the target or central pseudorapidity regions. The correlation between charged multiplicity and transverse energy measured in the central region, as well as the target and projectile regions is also presented. We give results for transverse energy per charged particle as a function of pseudorapidity and centrality.Comment: 31 pages + 12 figures (compressed and uuencoded by uufiles), LATEX, Submitted to PR

    Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

    Get PDF
    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (nu_x) 8B solar neutrino flux without assumptions about the energy dependence of the nu_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/- 0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta = 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.Comment: Submitted to Phys. Rev. Let

    Electron Antineutrino Search at the Sudbury Neutrino Observatory

    Get PDF
    Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have been set based on the \nuebar charged-current reaction on deuterium. The reaction produces a positron and two neutrons in coincidence. This distinctive signature allows a search with very low background for \nuebar's from the Sun and other potential sources. Both differential and integral limits on the \nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2} s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3 -- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in which only the two neutrons are detected. Assuming a \nuebar spectrum for the neutron induced fission of naturally occurring elements, a flux limit of Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.

    Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory

    Get PDF
    Solar neutrinos from the decay of 8^8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to nu_e's, while the ES reaction also has a small sensitivity to nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC reaction rate is \phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6 /cm^2 s. Assuming no flavor transformation, the flux inferred from the ES reaction rate is \phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s. Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that there is a non-electron flavor active neutrino component in the solar flux. The total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x 10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter

    Π‘Ρ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ российской онкологичСской слуТбы послС Π’Π΅Π»ΠΈΠΊΠΎΠΉ ΠžΡ‚Π΅Ρ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠΉ Π²ΠΎΠΉΠ½Ρ‹

    Get PDF
    Oncology was officially acknowledged as a separate branch of medical science 75 years ago. Historically, it was landmarked by Order No. 323 of the People’s Commissariat for Health of the USSR of April 30, 1945 β€œOn efforts to improve national oncology care”. This decision triggered deployment of a network of oncological institutions that covered almost the entire country in relatively short time and persists today. Aside to rapid revival of existing cancer institutions, new research centres for oncology and radiology, cancer dispensaries and rooms were being set up to gear universal and comprehensive case archival, due-time tumour diagnostics and vocational training, along with manifold other measures to contain cancer. A milestone event was the erection of the Oncological Society in 1954 by the Scientific Council Presidium of the USSR Ministry of Health. The Moscow and All-Union oncological societies contributed greatly to establishment of the Oncology Service and promoted the prestige of Soviet oncology, professional activity in the Union’s republics and overall effectiveness against cancer. Involvement of outstanding scientists, leading oncologists and healthcare decision makers in fostering the Oncology Service cannot be overstated. Today, a progress is made towards understanding the roots of cancer, supply of medical institutions with state-of-the-art equipment, implementation of effective diagnostic and therapy practices. Nevertheless, as yet timely remain further enhancement of preventive medicine, deployment of regional programs for cancer monitoring, education and higher-level professional training, remodelling of diagnostics and care in specialised oncological and primary medical institutions, creation of a unified system for prevention, earlier diagnosis and treatment of cancer.Онкология 75 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄ ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Π±Ρ‹Π»Π° ΠΏΡ€ΠΈΠ·Π½Π°Π½Π° ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ мСдицинской дисциплиной. Π˜ΡΡ‚ΠΎΡ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΌ событиСм стал ΠŸΡ€ΠΈΠΊΠ°Π· β„– 323 Наркомздрава Π‘Π‘Π‘Π  ΠΎΡ‚ 30 апрСля 1945 Π³. «О Π±ΠΎΡ€ΡŒΠ±Π΅ ΠΏΠΎ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡŽ онкологичСской ΠΏΠΎΠΌΠΎΡ‰ΠΈ насСлСнию». Π­Ρ‚ΠΈΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π±Ρ‹Π»Π° Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚Π° ΡΠ΅Ρ‚ΡŒ онкологичСских ΡƒΡ‡Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ, ΠΎΡ…Π²Π°Ρ‚ΠΈΠ²ΡˆΠ°Ρ практичСски всС Ρ€Π΅Π³ΠΈΠΎΠ½Ρ‹ страны Π·Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π² настоящСС врСмя. Наряду с быстрым восстановлСниСм ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… онкологичСских ΡƒΡ‡Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π»ΠΈΡΡŒ Π½ΠΎΠ²Ρ‹Π΅ Π½Π°ΡƒΡ‡Π½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΠ΅ институты ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ€Π°Π΄ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ, онкологичСскиС диспансСры ΠΈ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ‚Ρ‹, ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Ρ‹Π²Π°Π»Π°ΡΡŒ повсСмСстная систСма ΡƒΡ‡Π΅Ρ‚Π° онкологичСских Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΈ своСврСмСнной диагностики ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»Π°ΡΡŒ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° ΠΊΠ°Π΄Ρ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ мноТСство Π΄Ρ€ΡƒΠ³ΠΈΡ… мСроприятий ΠΏΠΎ Π±ΠΎΡ€ΡŒΠ±Π΅ с онкологичСскими заболСваниями. Одним ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… событий Π² ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ стало созданиС Π² 1954 Π³. ΠΏΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ ΠΏΡ€Π΅Π·ΠΈΠ΄ΠΈΡƒΠΌΠ° Π£Ρ‡Π΅Π½ΠΎΠ³ΠΎ совСта ΠœΠΈΠ½Π·Π΄Ρ€Π°Π²Π° Π‘Π‘Π‘Π  ΠžΠ±Ρ‰Π΅ΡΡ‚Π²Π° ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ². Московским ΠΈ Π’ΡΠ΅ΡΠΎΡŽΠ·Π½Ρ‹ΠΌ общСствами ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ² Π±Ρ‹Π» внСсСн Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΉ Π²ΠΊΠ»Π°Π΄ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ онкологичСской слуТбы. Они способствовали росту прСстиТа совСтской ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ, активности ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ² ΡΠΎΡŽΠ·Π½Ρ‹Ρ… рСспублик, эффСктивности ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π°ΠΊΠΎΠ²ΠΎΠΉ Π±ΠΎΡ€ΡŒΠ±Ρ‹. НСвозмоТно ΠΏΠ΅Ρ€Π΅ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Π²ΠΊΠ»Π°Π΄ Π² становлСниС онкологичСской слуТбы Π²Ρ‹Π΄Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΡƒΡ‡Π΅Π½Ρ‹Ρ…, ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² здравоохранСния, Π³Π»Π°Π²Π½Ρ‹Ρ… ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ² страны. Π’ настоящСС врСмя достигнуты успСхи Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΈ- Ρ‡ΠΈΠ½ возникновСния Ρ€Π°ΠΊΠ°, Π² оснащСнии мСдицинских ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ соврСмСнным высокоэффСктивным ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, Π²ΠΎ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠΈ эффСктивных диагностичСских ΠΈ Π»Π΅Ρ‡Π΅Π±Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ Π² ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ. Однако ΠΏΠΎ-ΠΏΡ€Π΅ΠΆΠ½Π΅ΠΌΡƒ ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ дальнСйшСго ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ профилактичСской Ρ€Π°Π±ΠΎΡ‚Ρ‹; Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ внСдрСния Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠΏΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π°ΠΊΠΎΠ²ΠΎΠΉ Π±ΠΎΡ€ΡŒΠ±Π΅; ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ, ΠΏΠ΅Ρ€Π΅ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ уровня ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊΠ°Π΄Ρ€ΠΎΠ²; ΠΌΠΎΠ΄Π΅Ρ€Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π»Π΅Ρ‡Π΅Π±Π½ΠΎ-диагностичСского процСсса Π² спСциализированных онкологичСских учрСТдСниях ΠΈ учрСТдСниях ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π·Π²Π΅Π½Π° здравоохранСния; создания Π΅Π΄ΠΈΠ½ΠΎΠΉ систСмы ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ, Ρ€Π°Π½Π½Π΅ΠΉ диагностики ΠΈ лСчСния онкологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at sqrt(s_NN) = 130 GeV

    Full text link
    Two particle azimuthal correlation functions are presented for charged hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The measurements permit determination of elliptic flow without event-by-event estimation of the reaction plane. The extracted elliptic flow values v_2 show significant sensitivity to both the collision centrality and the transverse momenta of emitted hadrons, suggesting rapid thermalization and relatively strong velocity fields. When scaled by the eccentricity of the collision zone, epsilon, the scaled elliptic flow shows little or no dependence on centrality for charged hadrons with relatively low p_T. A breakdown of this epsilon scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most central collisions.Comment: 6 pages, RevTeX 3, 4 figures, 307 authors, submitted to Phys. Rev. Lett. on 11 April 2002. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (will be made) publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Net Charge Fluctuations in Au + Au Interactions at sqrt(s_NN) = 130 GeV

    Full text link
    Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the PHENIX detector at RHIC, are used to investigate local net charge fluctuations among particles produced near mid-rapidity. According to recent suggestions, such fluctuations may carry information from the Quark Gluon Plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.Comment: 6 pages, RevTeX 3, 3 figures, 307 authors, submitted to Phys. Rev. Lett. on 21 March, 2002. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (will be made) publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Event-by-event fluctuations in Mean pTp_T and Mean eTe_T in sqrt(s_NN) = 130 GeV Au+Au Collisions

    Full text link
    Distributions of event-by-event fluctuations of the mean transverse momentum and mean transverse energy near mid-rapidity have been measured in Au+Au collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to what is expected for statistically independent particle emission, the magnitude of non-statistical fluctuations in mean transverse momentum is determined to be consistent with zero. Also, no significant non-random fluctuations in mean transverse energy are observed. By constructing a fluctuation model with two event classes that preserve the mean and variance of the semi-inclusive p_T or e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au collisions.Comment: 10 pages, RevTeX 3, 7 figures, 4 tables, 307 authors, submitted to Phys. Rev. C on 22 March 2002. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (will be made) publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s_NN)=130 GeV

    Full text link
    We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find dNch/dη∣η=0=622±1(stat)±41(syst)dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst). The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.Comment: 307 authors, 43 institutions, 6 pages, 4 figures, 1 table Minor changes to figure labels and text to meet PRL requirements. One author added: M. Hibino of Waseda Universit
    • …
    corecore