99 research outputs found

    Genotyping of clinically relevant human adenoviruses by array-in-well hybridization assay

    Get PDF
    AbstractA robust oligonucleotide array-in-well hybridization assay using novel up-converting phosphor reporter technology was applied for genotyping clinically relevant human adenovirus types. A total of 231 adenovirus-positive respiratory, ocular swab, stool and other specimens from 219 patients collected between April 2010 and April 2011 were included in the study. After a real-time PCR amplification targeting the adenovirus hexon gene, the array-in-well assay identified the presence of B03 (n = 122; 57.5% of patients), E04 (29; 13.7%), C02 (21; 9.9%), D37 (14; 6.6%), C01 (12; 5.7%), C05 (5; 2.4%), D19 (4; 1.9%), C06 (2; 0.9%), D08 (1; 0.5%), A31 (1; 0.5%) and F41 (1; 0.5%) genotypes among the clinical sample panel. The typing result was obtained for all specimens that could be amplified (n = 223; 97%), and specificity of the typing was confirmed by sequencing specimens representing each of the different genotypes. No hybridization signal was obtained in adenovirus-negative specimens or specimens with other viruses (n = 30). The array-in-well hybridization assay has great potential as a rapid and multiplex platform for the typing of clinically relevant human adenovirus genotypes in different specimen types

    Upconversion Cross-Correlation Spectroscopy of a Sandwich Immunoassay

    Get PDF
    Fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) have enabled biologists to study processes of transport, binding, and enzymatic reactions in living cells. However, applying FCS and FCCS to samples such as whole blood and plasma is complicated as the fluorescence bursts of diffusing labels can be swamped by strong autofluorescence. Here we present cross-correlation spectroscopy based on two upconversion nanoparticles emitting at different wavelengths on the anti-Stokes side of a single excitation laser. This upconversion cross-correlation spectroscopy (UCCS) approach allows us to completely remove all Stokes shifted autofluorescence background in biological material such as plasma. As a proof of concept, we evaluate the applicability of UCCS to a homogeneous sandwich immunoassay for thyroid stimulating hormone measured in buffer solution and in plasma

    Pandemic influenza A(H1N1 pdm09) vaccine induced high levels of influenza-specific IgG and IgM antibodies as analyzed by enzyme immunoassay and dual-mode multiplex microarray immunoassay methods

    Get PDF
    Influenza A viruses continue to circulate throughout the world as yearly epidemics or occasional pandemics. Influenza infections can be prevented by seasonal multivalent or monovalent pandemic vaccines. In the present study, we describe a novel multiplex microarray immunoassay (MAIA) for simultaneous measurement of virus-specific IgG and IgM antibodies using Pandemrix-vaccinated adult sera collected at day 0 and 28 and 180 days after vaccination as the study material. MAIA showed excellent correlation with a conventional enzyme immunoassay (EIA) in both IgG and IgM anti-influenza A antibodies and good correlation with hemagglutination inhibition (HI) test. Pandemrix vaccine induced 5-30 fold increases in anti-H1N1pdm09 influenza antibodies as measured by HI, EIA or MAIA. A clear increase in virus-specific IgG antibodies was found in 93-97% of vaccinees by MAIA and EIA. Virus-specific IgM antibodies were found in 90-92% of vaccinees by MAIA and EIA, respectively and IgM antibodies persisted for up to 6 months after vaccination in 55-62% of the vaccinees. Pandemic influenza vaccine induced strong anti-influenza A IgG and IgM responses that persisted several months after vaccination. MAIA was demonstrated to be an excellent method for simultaneous measurement of antiviral IgG and IgM antibodies against multiple virus antigens. Thus the method is well suitable for large scale epidemiological and vaccine immunity studies. (C) 2020 Elsevier Ltd. All rights reserved

    CD44s and CD44v6 Expression in Head and Neck Epithelia

    Get PDF
    Background: CD44 splice variants are long-known as being associated with cell transformation. Recently, the standard form of CD44 (CD44s) was shown to be part of the signature of cancer stem cells (CSCs) in colon, breast, and in head and neck squamous cell carcinomas (HNSCC). This is somewhat in contradiction to previous reports on the expression of CD44s in HNSCC. The aim of the present study was to clarify the actual pattern of CD44 expression in head and neck epithelia. Methods: Expression of CD44s and CD44v6 was analysed by immunohistochemistry with specific antibodies in primary head and neck tissues. Scoring of all specimens followed a two-parameters system, which implemented percentages of positive cells and staining intensities from − to +++ (score = %×intensity; resulting max. score 300). In addition, cell surface expression of CD44s and CD44v6 was assessed in lymphocytes and HNSCC. Results: In normal epithelia CD44s and CD44v6 were expressed in 60–95% and 50–80% of cells and yielded mean scores with a standard error of a mean (SEM) of 249.5±14.5 and 198±11.13, respectively. In oral leukoplakia and in moderately differentiated carcinomas CD44s and CD44v6 levels were slightly increased (278.9±7.16 and 242±11.7; 291.8±5.88 and 287.3±6.88). Carcinomas in situ displayed unchanged levels of both proteins whereas poorly differentiated carcinomas consistently expressed diminished CD44s and CD44v6 levels. Lymphocytes and HNSCC lines strongly expressed CD44s but not CD44v6. Conclusion: CD44s and CD44v6 expression does not distinguish normal from benign or malignant epithelia of the head and neck. CD44s and CD44v6 were abundantly present in the great majority of cells in head and neck tissues, including carcinomas. Hence, the value of CD44s as a marker for the definition of a small subset of cells (i.e. less than 10%) representing head and neck cancer stem cells may need revision

    Lanthanide-based time-resolved luminescence immunoassays

    Get PDF
    The sensitive and specific detection of analytes such as proteins in biological samples is critical for a variety of applications, for example disease diagnosis. In immunoassays a signal in response to the concentration of analyte present is generated by use of antibodies labeled with radioisotopes, luminophores, or enzymes. All immunoassays suffer to some extent from the problem of the background signal observed in the absence of analyte, which limits the sensitivity and dynamic range that can be achieved. This is especially the case for homogeneous immunoassays and surface measurements on tissue sections and membranes, which typically have a high background because of sample autofluorescence. One way of minimizing background in immunoassays involves the use of lanthanide chelate labels. Luminescent lanthanide complexes have exceedingly long-lived luminescence in comparison with conventional fluorophores, enabling the short-lived background interferences to be removed via time-gated acquisition and delivering greater assay sensitivity and a broader dynamic range. This review highlights the potential of using lanthanide luminescence to design sensitive and specific immunoassays. Techniques for labeling biomolecules with lanthanide chelate tags are discussed, with aspects of chelate design. Microtitre plate-based heterogeneous and homogeneous assays are reviewed and compared in terms of sensitivity, dynamic range, and convenience. The great potential of surface-based time-resolved imaging techniques for biomolecules on gels, membranes, and tissue sections using lanthanide tracers in proteomics applications is also emphasized

    Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors

    Get PDF
    Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions

    Multiplex Immunoassay of Lower Genital Tract Mucosal Fluid from Women Attending an Urban STD Clinic Shows Broadly Increased IL1ß and Lactoferrin

    Get PDF
    BACKGROUND: More than one million new cases of sexually transmitted diseases (STDs) occur each day. The immune responses and inflammation induced by STDs and other frequent non-STD microbial colonizations (i.e. Candida and bacterial vaginosis) can have serious pathologic consequences in women including adverse pregnancy outcomes, infertility and increased susceptibility to infection by other pathogens. Understanding the types of immune mediators that are elicited in the lower genital tract by these infections/colonizations can give important insights into the innate and adaptive immune pathways that are activated and lead to strategies for preventing pathologic effects. METHODOLOGY/PRINCIPAL FINDINGS: 32 immune mediators were measured by multiplexed immunoassays to assess the immune environment of the lower genital tract mucosa in 84 women attending an urban STD clinic. IL-3, IL-1ß, VEGF, angiogenin, IL-8, ß2Defensin and ß3Defensin were detected in all subjects, Interferon-α was detected in none, while the remaining mediators were detected in 40% to 93% of subjects. Angiogenin, VEGF, FGF, IL-9, IL-7, lymphotoxin-α and IL-3 had not been previously reported in genital mucosal fluid from women. Strong correlations were observed between levels of TNF-α, IL-1ß and IL-6, between chemokines IP-10 and MIG and between myeloperoxidase, IL-8 and G-CSF. Samples from women with any STD/colonization had significantly higher levels of IL-8, IL-3, IL-7, IL-1ß, lactoferrin and myeloperoxidase. IL-1ß and lactoferrin were significantly increased in gonorrhea, Chlamydia, cervicitis, bacterial vaginosis and trichomoniasis. CONCLUSIONS/SIGNIFICANCE: These studies show that mucosal fluid in general appears to be an environment that is rich in immune mediators. Importantly, IL-1ß and lactoferrin are biomarkers for STDs/colonizations providing insights into immune responses and pathogenesis at this mucosal site

    The role of micro-organisms (Staphylococcus aureus and Candida albicans) in the pathogenesis of breast pain and infection in lactating women: study protocol

    Get PDF
    Background: The CASTLE (Candida and Staphylococcus Transmission: Longitudinal Evaluation) study will investigate the micro-organisms involved in the development of mastitis and &ldquo;breast thrush&rdquo; among breastfeeding women. To date, the organism(s) associated with the development of breast thrush have not been identified. The CASTLE study will also investigate the impact of physical health problems and breastfeeding problems on maternal psychological health in the early postpartum period.Methods/Design: The CASTLE study is a longitudinal descriptive study designed to investigate the role of Staphylococcus spp (species) and Candida spp in breast pain and infection among lactating women, and to describe the transmission dynamics of S. aureus and Candida spp between mother and infant. The relationship between breastfeeding and postpartum health problems as well as maternal psychological well-being is also being investigated. A prospective cohort of four hundred nulliparous women who are at least thirty six weeks gestation pregnant are being recruited from two hospitals in Melbourne, Australia (November 2009 to June 2011). At recruitment, nasal, nipple (both breasts) and vaginal swabs are taken and participants complete a questionnaire asking about previous known staphylococcal and candidal infections. Following the birth, participants are followed-up six times: in hospital and then at home weekly until four weeks postpartum. Participants complete a questionnaire at each time points to collect information about breastfeeding problems and postpartum health problems. Nasal and nipple swabs and breast milk samples are collected from the mother. Oral and nasal swabs are collected from the baby. A telephone interview is conducted at eight weeks postpartum to collect information about postpartum health problems and breastfeeding problems, such as mastitis and nipple and breast pain.Discussion: This study is the first longitudinal study of the role of both staphylococcal and candidal colonisation in breast infections and will help to resolve the current controversy about which is the primary organism in the condition known as breast thrush. This study will also document transmission dynamics of S. aureus and Candida spp between mother and infant. In addition, CASTLE will investigate the impact of common maternal physical health symptoms and the effect of breastfeeding problems on maternal psychological well-being.<br /

    A randomised clinical study to determine the effect of a toothpaste containing enzymes and proteins on plaque oral microbiome ecology

    Get PDF
    The numerous species that make up the oral microbiome are now understood to play a key role in establishment and maintenance of oral health. The ability to taxonomically identify community members at the species level is important to elucidating its diversity and association to health and disease. We report the overall ecological effects of using a toothpaste containing enzymes and proteins compared to a control toothpaste on the plaque microbiome. The results reported here demonstrate that a toothpaste containing enzymes and proteins can augment natural salivary defences to promote an overall community shift resulting in an increase in bacteria associated with gum health and a concomitant decrease in those associated with periodontal disease. Statistical analysis shows significant increases in 12 taxa associated with gum health including Neisseria spp. and a significant decrease in 10 taxa associated with periodontal disease including Treponema spp. The results demonstrate that a toothpaste containing enzymes and proteins can significantly shift the ecology of the oral microbiome (at species level) resulting in a community with a stronger association to health
    • 

    corecore