578 research outputs found
Red blood cells and other non-spherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition
We consider the motion of red blood cells and other non-spherical
microcapsules dilutely suspended in a simple shear flow. Our analysis indicates
that depending on the viscosity, membrane elasticity, geometry and shear rate,
the particle exhibits either tumbling, tank-treading of the membrane about the
viscous interior with periodic oscillations of the orientation angle, or
intermittent behavior in which the two modes occur alternately. For red blood
cells, we compute the complete phase diagram and identify a novel
tank-treading-to-tumbling transition at low shear rates. Observations of such
motions coupled with our theoretical framework may provide a sensitive means of
assessing capsule properties.Comment: 11 pages, 4 figure
Recommended from our members
Cyclin D-Cdk4,6 Drives Cell-Cycle Progression via the Retinoblastoma Protein's C-Terminal Helix.
The cyclin-dependent kinases Cdk4 and Cdk6 form complexes with D-type cyclins to drive cell proliferation. A well-known target of cyclin D-Cdk4,6 is the retinoblastoma protein Rb, which inhibits cell-cycle progression until its inactivation by phosphorylation. However, the role of Rb phosphorylation by cyclin D-Cdk4,6 in cell-cycle progression is unclear because Rb can be phosphorylated by other cyclin-Cdks, and cyclin D-Cdk4,6 has other targets involved in cell division. Here, we show that cyclin D-Cdk4,6 docks one side of an alpha-helix in the Rb C terminus, which is not recognized by cyclins E, A, and B. This helix-based docking mechanism is shared by the p107 and p130 Rb-family members across metazoans. Mutation of the Rb C-terminal helix prevents its phosphorylation, promotes G1 arrest, and enhances Rb's tumor suppressive function. Our work conclusively demonstrates that the cyclin D-Rb interaction drives cell division and expands the diversity of known cyclin-based protein docking mechanisms
CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension
The prognostic variability of thyroid carcinomas has led to the search for accurate biomarkers at the molecular level. Follicular thyroid carcinoma (FTC) is a typical example of differentiated thyroid carcinomas (DTC) in which challenges are faced in the differential diagnosis. Methods: We used high-throughput paired-end RNA sequencing technology to study four cases of FTC with different degree of capsular invasion: two minimally invasive (mFTC) and two widely invasive FTC (wFTC). We searched by genes differentially expressed between mFTC and wFTC, in an attempt to find biomarkers of thyroid cancer diagnosis and/or progression. Selected biomarkers were validated by real-time quantitative PCR in 137 frozen thyroid samples and in an independent dataset (TCGA), evaluating the diagnostic and the prognostic performance of the candidate biomarkers. Results: We identified 17 genes significantly differentially expressed between mFTC and wFTC. C1QL1, LCN2, CRABP1 and CILP were differentially expressed in DTC in comparison with normal thyroid tissues. LCN2 and CRABP1 were also differentially expressed in DTC when compared with follicular thyroid adenoma. Additionally, overexpression of LCN2 and C1QL1 were found to be independent predictors of extrathyroidal extension in DTC. Conclusions: We conclude that the underexpression of CRABP1 and the overexpression of LCN2 may be useful diagnostic biomarkers in thyroid tumours with questionable malignity, and the overexpression of LCN2 and C1QL1 may be useful for prognostic purposes.This work was financed by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação in the framework of the project "Institute for Research and Innovation in Health Sciences" (POCI-01-0145-FEDER-007274). Further funding from the project "Advancing cancer research: from basic knowledgment to application";NORTE-01-0145-FEDER-000029; “Projetos Estruturados de I&D&I”, funded by Norte 2020 – Programa Operacional Regional do Norte; The study was funded by grants from the Research Council of Norway through its Centers of Excellence funding scheme (project number 179571). The funding organizations do not have any interference in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript
A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis
<p>Abstract</p> <p>Background</p> <p>The ability to detect neoplasia-specific fusion genes is important not only in cancer research, but also increasingly in clinical settings to ensure that correct diagnosis is made and the optimal treatment is chosen. However, the available methodologies to detect such fusions all have their distinct short-comings.</p> <p>Results</p> <p>We describe a novel oligonucleotide microarray strategy whereby one can screen for all known oncogenic fusion transcripts in a single experiment. To accomplish this, we combine measurements of chimeric transcript junctions with exon-wise measurements of individual fusion partners. To demonstrate the usefulness of the approach, we designed a DNA microarray containing 68,861 oligonucleotide probes that includes oligos covering all combinations of chimeric exon-exon junctions from 275 pairs of fusion genes, as well as sets of oligos internal to all the exons of the fusion partners. Using this array, proof of principle was demonstrated by detection of known fusion genes (such as <it>TCF3:PBX1</it>, <it>ETV6:RUNX1</it>, and <it>TMPRSS2:ERG</it>) from all six positive controls consisting of leukemia cell lines and prostate cancer biopsies.</p> <p>Conclusion</p> <p>This new method bears promise of an important complement to currently used diagnostic and research tools for the detection of fusion genes in neoplastic diseases.</p
The loss of NKX3.1 expression in testicular – and prostate – cancers is not caused by promoter hypermethylation
BACKGROUND: Recent studies have demonstrated that the NKX3.1 protein is commonly down-regulated in testicular germ cell tumors (TGCTs) and prostate carcinomas. The homeobox gene NKX3.1 maps to chromosome band 8p21, which is a region frequently lost in prostate cancer, but not in TGCT. Mutations have not been reported in the NKX3.1 sequence, and the gene is hypothesized to be epigenetically inactivated. In the present study we examined the methylation status of the NKX3.1 promoter in relevant primary tumors and cell lines: primary TGCTs (n = 55), intratubular germ cell neoplasias (n = 7), germ cell tumor cell lines (n = 3), primary prostate adenocarcinomas (n = 20), and prostate cancer cell lines (n = 3) by methylation-specific PCR and bisulphite sequencing. RESULTS AND CONCLUSIONS: Down-regulation of NKX3.1 expression was generally not caused by promoter hypermethylation, which was only found in one TGCT. However, other epigenetic mechanisms, such as modulation of chromatin structure or modifications of histones, may explain the lack of NKX3.1 expression, which is seen in most TGCTs and prostate cancer specimens
Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci
<p>Abstract</p> <p>Background</p> <p>Estimates suggest that up to 30% of colorectal cancers (CRC) may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV) (Roche NimbleGen, 385 000 oligo CGH array) in microsatellite stable (MSS) tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53) and 17 elderly patients with median age 79 years (range: 69-87). Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list.</p> <p>Results</p> <p>The total fraction of the genome with aberrant copy number, the overall genomic profile and the <it>TP53 </it>mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, <it>CLC, EIF4E</it>, <it>LTBP4, PLA2G12A, PPAT</it>, <it>RG9MTD2</it>, and <it>ZNF574</it>, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups.</p> <p>Conclusions</p> <p>Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late onset CRC. Integration of genome and transcriptome data identifies seven novel candidate genes with the potential to identify an increased risk for CRC.</p
Cysteine-Rich Secretory Protein-3 (CRISP3) Is Strongly Up-Regulated in Prostate Carcinomas with the TMPRSS2-ERG Fusion Gene
A large percentage of prostate cancers harbor TMPRSS2-ERG gene fusions, leading to aberrant overexpression of the transcription factor ERG. The target genes deregulated by this rearrangement, however, remain mostly unknown. To address this subject we performed genome-wide mRNA expression analysis on 6 non-malignant prostate samples and 24 prostate carcinomas with (n = 16) and without (n = 8) TMPRSS2-ERG fusion as determined by FISH. The top-most differentially expressed genes and their associations with ERG over-expression were technically validated by quantitative real-time PCR and biologically validated in an independent series of 200 prostate carcinomas. Several genes encoding metabolic enzymes or extracellular/transmembrane proteins involved in cell adhesion, matrix remodeling and signal transduction pathways were found to be co-expressed with ERG. Within those significantly over-expressed in fusion-positive carcinomas, CRISP3 showed more than a 50-fold increase when compared to fusion-negative carcinomas, whose expression levels were in turn similar to that of non-malignant samples. In the independent validation series, ERG and CRISP3 mRNA levels were strongly correlated (rs = 0.65, p<0.001) and both were associated with pT3 disease staging. Furthermore, immunohistochemistry results showed CRISP3 protein overexpression in 63% of the carcinomas and chromatin immunoprecipitation with an anti-ERG antibody showed that CRISP3 is a direct target of the transcription factor ERG. We conclude that ERG rearrangement is associated with significant expression alterations in genes involved in critical cellular pathways that define a subset of locally advanced PCa. In particular, we show that CRISP3 is a direct target of ERG that is strongly overexpressed in PCa with the TMPRSS2-ERG fusion gene
Dynamics of Fluid Vesicles in Oscillatory Shear Flow
The dynamics of fluid vesicles in oscillatory shear flow was studied using
differential equations of two variables: the Taylor deformation parameter and
inclination angle . In a steady shear flow with a low viscosity
of internal fluid, the vesicles exhibit steady tank-treading
motion with a constant inclination angle . In the oscillatory flow
with a low shear frequency, oscillates between or
around for zero or finite mean shear rate ,
respectively. As shear frequency increases, the vesicle
oscillation becomes delayed with respect to the shear oscillation, and the
oscillation amplitude decreases. At high with , another limit-cycle oscillation between and
is found to appear. In the steady flow, periodically rotates
(tumbling) at high , and and the vesicle shape
oscillate (swinging) at middle and high shear rate. In the
oscillatory flow, the coexistence of two or more limit-cycle oscillations can
occur for low in these phases. For the vesicle with a fixed shape,
the angle rotates back to the original position after an oscillation
period. However, it is found that a preferred angle can be induced by small
thermal fluctuations.Comment: 11 pages, 13 figure
Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours
The carcinoma in situ (CIS) cell is the common precursor of nearly all testicular germ cell tumours (TGCT). In a previous study, we examined the gene expression profile of CIS cells and found many features common to embryonic stem cells indicating that initiation of neoplastic transformation into CIS occurs early during foetal life. Progression into an overt tumour, however, typically first happens after puberty, where CIS cells transform into either a seminoma (SEM) or a nonseminoma (N-SEM). Here, we have compared the genome-wide gene expression of CIS cells to that of testicular SEM and a sample containing a mixture of N-SEM components, and analyse the data together with the previously published data on CIS. Genes showing expression in the SEM or N-SEM were selected, in order to identify gene expression markers associated with the progression of CIS cells. The identified markers were verified by reverse transcriptase–polymerase chain reaction and in situ hybridisation in a range of different TGCT samples. Verification showed some interpatient variation, but combined analysis of a range of the identified markers may discriminate TGCT samples as SEMs or N-SEMs. Of particular interest, we found that both DNMT3B (DNA (cytosine-5-)-methyltransferase 3 beta) and DNMT3L (DNA (cytosine-5-)-methyltransferase 3 like) were overexpressed in the N-SEMs, indicating the epigenetic differences between N-SEMs and classical SEM
- …