146 research outputs found

    High Resolution Imaging of the Magnetic Field in the central parsec of the Galaxy

    Full text link
    We discuss a high resolution (FWHM~ 0.45 arcsec) image of the emissive polarization from warm dust in the minispiral in the Galactic Centre and discuss the implications for the magnetic field in the dusty filaments. The image was obtained at a wavelength of 12.5 microns with the CanariCam multimode mid-infrared imager on the Gran Telescopio Canarias. It confirms the results obtained from previous observations but also reveals new details of the polarization structures. In particular, we identify regions of coherent magnetic field emission at position angles of ~45 deg to the predominantly north--south run of field lines in the Northern Arm which may be related to orbital motions inclined to the general flow of the Northern Arm. The luminous stars that have been identified as bow-shock sources in the Northern Arm do not disrupt or dilute the field but are linked by a coherent field structure, implying that the winds from these objects may push and compress the field but do not overwhelm it. The magnetic field in the the low surface brightness regions in the East-West Bar to the south of SgrA* lies along the Bar, but the brighter regions generally have different polarization position angles, suggesting that they are distinct structures. In the region of the Northern Arm sampled here, there is only a weak correlation between the intensity of the emission and the degree of polarization. This is consistent with saturated grain alignment where the degree of polarization depends on geometric effects, including the angle of inclination of the field to the line of sight and superposition of filaments with different field directions, rather than the alignment efficiency.Comment: 9 pages, 3 figures, Proceedings of Cosmic Dust X, held in Mitaka, Japan in August 201

    Dusty Sources at the Galactic Center: The N- and Q-band view with VISIR

    Full text link
    We present mid-infrared N- and Q-band photometry of the Galactic Center from images obtained with the mid-infrared camera VISIR at the ESO VLT in May 2004. The high resolution and sensitivity possible with VISIR enables us to investigate a total of over 60 point-like sources, an unprecedented number for the Galactic Center at these wavelengths. Combining these data with previous results at shorter wavelengths (Viehmann et al. 2005) enables us to construct SEDs covering the H- to Q-band regions of the spectrum, i.e. 1.6 to 19.5 Ό\mum. We find that the SEDs of certain types of Galactic Center sources show characteristic features. We can clearly distinguish between luminous Northern Arm bow-shock sources, lower luminosity bow-shock sources, hot stars, and cool stars. This characterization may help clarify the status of presently unclassified sources.Comment: 18 pages, 4 figures, 1 table, accepted for publication in the Astrophysical Journa

    The Magnetic Field in the central parsec of the Galaxy

    Full text link
    We present a polarisation map of the warm dust emission from the minispiral in the central parsec of the Galactic centre. The observations were made at a wavelength of 12.5 microns with CanariCam mounted on the 10.4-m Gran Telescopio Canarias. The magnetic field traced by the polarised emission from aligned dust grains is consistent with previous observations, but the increased resolution of the present data reveals considerably more information on the detailed structure of the B field and its correspondence with the filamentary emission seen in both mid-infrared continuum emission and free-free emission at cm wavelengths. The magnetic field appears to be compressed and pushed by the outflows from luminous stars in the Northern Arm, but it is not disordered by them. We identify some magnetically coherent filaments that cross the Northern Arm at a Position Angle of ~45 degrees, and which may trace orbits inclined to the primary orientation of the Northern Arm and circumnuclear disk. In the East-West bar, the magnetic fields implied by the polarization in the lower intensity regions lie predominantly along the bar at a Position Angle of 130 - 140 degrees. In contrast to the Northern Arm, the brighter regions of the bar tend to have lower degrees of polarization with a greater divergence in position angle compared to the local diffuse emission. It appears that the diffuse emission in the East-West bar traces the underlying field and that the bright compact sources are unrelated objects presumably projected onto the bar and with different field orientationsComment: 12 Pages, 5 figures, 1 Table. To be published in MNRA

    Near-Infrared Variability Study of the Central 2.3 arcmin x 2.3 arcmin of the Galactic Centre I. Catalog of Variable Sources

    Full text link
    We used four-year baseline HST/WFC3 IR observations of the Galactic Centre in the F153M band (1.53 micron) to identify variable stars in the central ~2.3'x2.3' field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33070 stars. For 36 of the latter ones, we also derived their periods (<3 days). Our catalog not only confirms bright long period variables and massive eclipsing binaries identified in previous works, but also contains many newly recognized dim variable stars. For example, we found \delta Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalog with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalog will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.Comment: has been accepted to be published in MNRAS, 64 pages, 26 figures. The complete lists of table 3, 4, 8 and 9 will be published onlin

    GRAVITY Spectro-interferometric Study of the Massive Multiple Stellar System HD 93206 A

    Get PDF
    Characterization of the dynamics of massive star systems and the astrophysical properties of the interacting components are a prerequisite for understanding their formation and evolution. Optical interferometry at milliarcsecond resolution is a key observing technique for resolving high-mass multiple compact systems. Here, we report on Very Large Telescope Interferometer/GRAVITY, Magellan/Folded-port InfraRed Echellette, and MPG2.2 m/FEROS observations of the late-O/early-B type system HD 93206 A, which is a member of the massive cluster Collinder 228 in the Carina nebula complex. With a total mass of about 90 M⊙90\,{M}_{\odot }, it is one of the most compact massive quadruple systems known. In addition to measuring the separation and position angle of the outer binary Aa–Ac, we observe BrÎł and He i variability in phase with the orbital motion of the two inner binaries. From the differential phase (Δϕ{{\rm{\Delta }}}_{\phi }) analysis, we conclude that the BrÎł emission arises from the interaction regions within the components of the individual binaries, which is consistent with previous models for the X-ray emission of the system based on wind–wind interaction. With an average 3σ deviation of Δϕ∌15∘{{\rm{\Delta }}}_{\phi }\sim 15^\circ , we establish an upper limit of p ~ 0.157 mas (0.35 au) for the size of the BrÎł line-emitting region. Future interferometric observations with GRAVITY using the 8 m Unit Telescopes will allow us to constrain the line-emitting regions down to angular sizes of 20 ÎŒas (0.05 au at the distance of the Carina nebula)

    SINFONI in the Galactic Center: young stars and IR flares in the central light month

    Full text link
    We report 75 milli-arcsec resolution, near-IR imaging spectroscopy within the central 30 light days of the Galactic Center [...]. To a limiting magnitude of K~16, 9 of 10 stars in the central 0.4 arcsec, and 13 of 17 stars out to 0.7 arcsec from the central black hole have spectral properties of B0-B9, main sequence stars. [...] all brighter early type stars have normal rotation velocities, similar to solar neighborhood stars. We [...] derive improved 3d stellar orbits for six of these S-stars in the central 0.5 arcsec. Their orientations in space appear random. Their orbital planes are not co-aligned with those of the two disks of massive young stars 1-10 arcsec from SgrA*. We can thus exclude [...] that the S-stars as a group inhabit the inner regions of these disks. They also cannot have been located/formed in these disks [...]. [...] we conclude that the S-stars were most likely brought into the central light month by strong individual scattering events. The updated estimate of distance to the Galactic center from the S2 orbit fit is Ro = 7.62 +/- 0.32 kpc, resulting in a central mass value of 3.61 +/- 0.32 x 10^6 Msun. We happened to catch two smaller flaring events from SgrA* [...]. The 1.7-2.45 mum spectral energy distributions of these flares are fit by a featureless, red power law [...]. The observed spectral slope is in good agreement with synchrotron models in which the infrared emission comes from [...] radiative inefficient accretion flow in the central R~10 Rs region.Comment: 50 pages, 10 figures, 2 tables, submitted to ApJ, February 6th, 2005, abstract abridge

    Constraining scalar fields with stellar kinematics and collisional dark matter

    Full text link
    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass mϕm_\phi and the self-interacting coupling constant λ\lambda of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nucleiComment: 23 pages, 8 figures; accepted for publication by JCAP after minor change

    Boson-fermion stars: exploring different configurations

    Get PDF
    We use the flexibility of the concept of a fermion-boson star to explore different configurations, ranging from objects of atomic size and masses of the order 101810^{18} g, up to objects of galactic masses and gigantic halos around a smaller core, with possible interesting applications to astrophysics and cosmology, particularly in the context of dark matter.Comment: 8 pages. Minor changes, new reference added and a few typos correcte

    DYNAMICS OF TIDALLY CAPTURED PLANETS IN THE GALACTIC CENTER

    Get PDF
    Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N-body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk and planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH
    • 

    corecore