705 research outputs found
Newtonian photorealistic ray tracing of grating cloaks and correlation-function-based cloaking-quality assessment
Grating cloaks are a variation of dielectric carpet (or ground-plane) cloaks. The latter were introduced by Li and Pendry. In contrast to the numerical work involved in the quasi-conformal carpet cloak, the refractive-index profile of a conformal grating cloak follows a closed and exact analytical form. We have previously mentioned that finite-size conformal grating cloaks may exhibit better cloaking than usual finite-size carpet cloaks. In this paper, we directly visualize their performance using photorealistic ray-tracing simulations. We employ a Newtonian approach that is advantageous compared to conventional ray tracing based on Snell\u27s law. Furthermore, we quantify the achieved cloaking quality by computing the cross-correlations of rendered images. The cross-correlations for the grating cloak are much closer to 100% (i.e., ideal) than those for the Gaussian carpet cloak
Modified spin-wave theory with ordering vector optimization I: frustrated bosons on the spatially anisotropic triangular lattice
We investigate a system of frustrated hardcore bosons, modeled by an XY
antiferromagnet on the spatially anisotropic triangular lattice, using
Takahashi's modified spin-wave (MSW) theory. In particular we implement
ordering vector optimization on the ordered reference state of MSW theory,
which leads to significant improvement of the theory and accounts for quantum
corrections to the classically ordered state. The MSW results at zero
temperature compare favorably to exact diagonalization (ED) and projected
entangled-pair state (PEPS) calculations. The resulting zero-temperature phase
diagram includes a 1D quasi-ordered phase, a 2D Neel ordered phase, and a 2D
spiraling ordered phase. We have strong indications that the various ordered or
quasi-ordered phases are separated by spin-liquid phases with short-range
correlations, in analogy to what has been predicted for the Heisenberg model on
the same lattice. Within MSW theory we also explore the finite-temperature
phase diagram. We find that the zero-temperature long-range-ordered phases turn
into quasi-ordered phases (up to a Berezinskii-Kosterlitz-Thouless
temperature), while zero-temperature quasi-ordered phases become short-range
correlated at finite temperature. These results show that modified spin-wave
theory is very well suited for describing ordered and quasi-ordered phases of
frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at
zero and finite temperatures. While MSW theory, just as other theoretical
methods, cannot describe spin-liquid phases, its breakdown provides a fast
method for singling out Hamiltonians which may feature these intriguing quantum
phases. We thus suggest a tool for guiding our search for interesting systems
whose properties are necessarily studied with a physical quantum simulator.Comment: 40 pages, 16 figure
Optical Trapping of an Ion
For several decades, ions have been trapped by radio frequency (RF) and
neutral particles by optical fields. We implement the experimental
proof-of-principle for trapping an ion in an optical dipole trap. While
loading, initialization and final detection are performed in a RF trap, in
between, this RF trap is completely disabled and substituted by the optical
trap. The measured lifetime of milliseconds allows for hundreds of oscillations
within the optical potential. It is mainly limited by heating due to photon
scattering. In future experiments the lifetime may be increased by further
detuning the laser and cooling the ion. We demonstrate the prerequisite to
merge both trapping techniques in hybrid setups to the point of trapping ions
and atoms in the same optical potential.Comment: 5 pages, 3 figure
Phase Space Tomography of Matter-Wave Diffraction in the Talbot Regime
We report on the theoretical investigation of Wigner distribution function
(WDF) reconstruction of the motional quantum state of large molecules in de
Broglie interference. De Broglie interference of fullerenes and as the like
already proves the wavelike behaviour of these heavy particles, while we aim to
extract more quantitative information about the superposition quantum state in
motion. We simulate the reconstruction of the WDF numerically based on an
analytic probability distribution and investigate its properties by variation
of parameters, which are relevant for the experiment. Even though the WDF
described in the near-field experiment cannot be reconstructed completely, we
observe negativity even in the partially reconstructed WDF. We further consider
incoherent factors to simulate the experimental situation such as a finite
number of slits, collimation, and particle-slit van der Waals interaction. From
this we find experimental conditions to reconstruct the WDF from Talbot
interference fringes in molecule Talbot-Lau interferometry.Comment: 16 pages, 9 figures, accepted at New Journal of Physic
Radio-frequency dressed lattices for ultracold alkali atoms
Ultracold atomic gases in periodic potentials are powerful platforms for exploring quantum physics in regimes dominated by many-body effects as well as for developing applications that benefit from quantum mechanical effects. Further advances face a range of challenges including the realization of potentials with lattice constants smaller than optical wavelengths as well as creating schemes for effective addressing and manipulation of single sites. In this paper we propose a dressed-based scheme for creating periodic potential landscapes for ultracold alkali atoms with the capability of overcoming such difficulties. The dressed approach has the advantage of operating in a low-frequency regime where decoherence and heating effects due to spontaneous emission do not take place. These results highlight the possibilities of atom-chip technology in the future development of quantum simulations and quantum technologies, and provide a realistic scheme for starting such an exploration
Tomographic reconstruction of the Wigner function on the Bloch sphere
We present a filtered backprojection algorithm for reconstructing the Wigner
function of a system of large angular momentum j from Stern-Gerlach-type
measurements. Our method is advantageous over the full determination of the
density matrix in that it is insensitive to experimental fluctuations in j, and
allows for a natural elimination of high-frequency noise in the Wigner function
by taking into account the experimental uncertainties in the determination of
j, its projection m, and the quantization axis orientation. No data binning and
no arbitrary smoothing parameters are necessary in this reconstruction. Using
recently published data [Riedel et al., Nature 464:1170 (2010)] we reconstruct
the Wigner function of a spin-squeezed state of a Bose-Einstein condensate of
about 1250 atoms, demonstrating that measurements along quantization axes lying
in a single plane are sufficient for performing this tomographic
reconstruction. Our method does not guarantee positivity of the reconstructed
density matrix in the presence of experimental noise, which is a general
limitation of backprojection algorithms.Comment: 16 pages, 6 figures; minor modification
Inflammation and changes in cytokine levels in neurological feline infectious peritonitis.
Feline infectious peritonitis (FIP) is a progressive, fatal, predominantly Arthus-type immune-mediated disease that is triggered when cats are infected with a mutant enteric coronavirus. The disease presents variably with multiple organ failure, seizures, generalized effusion, or shock. Neurological FIP is clinically and pathologically more homogeneous than systemic 'wet' or 'dry' FIP; thus, comparison of cytokine profiles from cats with neurological FIP, wet FIP, and non-FIP neurological disease may provide insight into some baseline characteristics relating to the immunopathogenesis of neurological FIP. This study characterizes inflammation and changes in cytokines in the brain tissue of FIP-affected cats. Cellular infiltrates in cats with FIP included lymphocytes, plasma cells, neutrophils, macrophages, and eosinophils. IL-1 beta, IL-6, IL-12, IL-18, TNF-alpha, macrophage inhibitory protein (MIP)-1 alpha, and RANTES showed no upregulation in the brains of control cats, moderate upregulation in neurological FIP cats, and very high upregulation in generalized FIP cats. Transcription of IFN-gamma appeared upregulated in cats with systemic FIP and slightly downregulated in neurological FIP. In most cytokines tested, variance was extremely high in generalized FIP and much less in neurological FIP. Principal components analysis was performed in order to find the least number of 'components' that would summarize the cytokine profiles in cats with neurological FIP. A large component of the variance (91.7%) was accounted for by levels of IL-6, MIP-1 alpha, and RANTES. These findings provide new insight into the immunopathogenesis of FIP and suggest targets for immune therapy of this disease
Characteristics and changes in characteristics of women and babies admitted to residential parenting services in New South Wales, Australia in the first year following birth: A population-based data linkage study 2000-2012
© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. Objective To examine the characteristics of women and babies admitted to the residential parenting services (RPS) of Tresillian and Karitane in the first year following birth. Design A linked population data cohort study was undertaken for the years 2000-2012. Setting New South Wales (NSW), Australia. Participants All women giving birth and babies born in NSW were compared with those admitted to RPS. Results During the time period there were a total of 1 097 762 births (2000-2012) in NSW and 32 991 admissions to RPS. Women in cohort 1: (those admitted to RPS) were older at the time of birth, more likely to be admitted as a private patient at the time of birth, be born in Australia and be having their first baby compared with women in cohort 2 (those not admitted to an RPS). Women admitted to RPS experienced more birth intervention (induction, instrumental birth, caesarean section), had more multiple births and were more likely to have a male infant. Their babies were also more likely to be resuscitated and have experienced birth trauma to the scalp. Between 2000 and 2012 the average age of women in the RPS increased by nearly 2 years; their infants were older on admission and women were less likely to smoke. Over the time period there was a drop in the numbers of women admitted to RPS having a normal vaginal birth and an increase in women having an instrumental birth. Conclusion Women who access RPS in the first year after birth are more socially advantaged and have higher birth intervention than those who do not, due in part to higher numbers birthing in the private sector where intervention rates are high. The rise in women admitted to RPS (2000-2012) who have had instrumental births is intriguing as overall rates did not increase
- …